State of California The Resources Agency ### Department of Water Resources # **Economic Analysis Guidelines** March 2007 ### State of California Arnold Schwarzenegger, Governor ### The Resources Agency Mike Chrisman, Secretary for Resources Department of Water Resources Lester A. Snow, Director Kasey SchimkeDavid SandinoSusan Sims-TeixeiraAsst. Director Legislative AffairsActing Chief CounselAsst. Director Public Affairs Timothy HainesLeslie Harder Jr.Reuben A. JimenezDeputy DirectorDeputy DirectorDeputy Director Gerald E. JohnsMark W. CowinRalph TorresDeputy DirectorDeputy DirectorDeputy Director Division of Planning and Local Assistance Statewide Water Planning Branch Kamyar Guivetchi, Principal Engineer **Economic Analysis Unit** Ray Hoagland, Research Manager III #### Prepared by Steve Cowdin, Research Program Specialist II (Econ) Editorial review, graphics, and report production Gretchen Goettl, Supervisor of Technical Publications James Joelson, research writer Marilee Talley, research writer ### **Table of Contents** | Department Organization Chart | iii | |---|------| | Executive Summary | vii | | Acronyms | xiii | | Chapter 1 Introduction | 1 | | Purposes of DWR Economic Analysis Guidelines | 1 | | Economic Analysis and the Planning Process | 2 | | Economic Analysis vs. Financial Analysis | 4 | | Economic Analysis | | | Financial Analysis | 6 | | Application of Economic Analysis at DWR | 7 | | Chapter 2 Federal and State Economic Analysis Guidelines | 9 | | Federal Economic Analysis Guidelines | Q | | Principles and Guidelines. | | | Circular A-94 | | | State Economics Analysis Guidelines | 11 | | California Department of Water Resources | | | State Water Resources Control Board | 12 | | Governor's Office of Planning and Research | 12 | | Chapter 3 Economic Analysis Methods | 13 | | Cost-Effectiveness Analysis | 13 | | | | | Benefit-Cost Analysis Decision Criteria | | | Types of Benefits | | | Primary Benefit Measurement Methods | | | Revealed Willingness to Pay | | | Imputed Willingness to Pay | | | Expressed Willingness to Pay | | | Table 3-1 summarizes the benefit measurement methods that are <i>typically</i> used for different water | 10 | | management project purposes. | 20 | | Types of Costs | | | Trade-off Analysis | | | Distribution Effects | | | Socioeconomic Impact Analysis | 24 | | Chapter 4 Ecosystem Valuation Methods | | | Ecosystem Services | 25 | | Monetizing Ecosystem Benefits | | | Revealed Willingness to Pay | | | Imputed Willingness to Pay | | | Expressed Willingness to Pay | | | Benefit Transfers. | | | Cost-Effectiveness Analysis | | | Cosi-Effectiveness Analysis | 33 | | Chapter 5 Economic Analysis Models | 34 | |--|------| | Economic Justification | | | Ecosystem Restoration | | | Flood Damage Reduction. | | | Water Quality Improvement | | | Socioeconomic Impact Analysis | 38 | | Chapter 6 Economic Analysis and the Federal Planning Process | 39 | | Federal Decision Criteria | 40 | | Federal Planning Accounts | 40 | | Plan Formulation | 41 | | Multi-Objective Projects | 44 | | Chapter 7 Financial Analysis | 46 | | Decision Criteria | 46 | | Financial Costs | 46 | | Capital Costs | | | Operation, Maintenance, and Replacement Costs | 47 | | Financing Water Infrastructure Projects | 47 | | State Water Project Financing | 49 | | Cost Allocation | 50 | | Determining Local Agency Repayment Capability | 51 | | Figure | | | Figure 4-1 Ecosystem services | 26 | | Tables | | | Table 1-1 Comparison of economic vs. financial analyses | 4 | | Table 3-1 Water management benefit measurement methods | | | Table 3-2 Hamilton City trade-off analysis proportion of maximum value method | | | Table 4-1 Summary of ecosystem valuation methods | | | Table 5-1 Economic analysis models and analysis objectives | | | Table 7-1 Summary of federal and non-federal cost sharing responsibilities by project purposes | | | Appendices | back | | Appendix A Economic Analysis Concepts | | | Appendix B Example Analyses | | | Appendix C References | | | Appendix D Economic Guidelines Glossary | | #### **Executive Summary** Because of its considerable water management partnerships with the federal government, the Department of Water Resources (DWR) has a policy that all economic analyses conducted for its programs and projects be fundamentally consistent with the federal *Economics and Environmental Principles and Guidelines for Water and Related Land Resources Implementation Studies* (*P&G*), which was adopted by the US Water Resources Council on March 10, 1983. The *P&G* set forth *principles* "...intended to ensure proper and consistent planning by federal agencies in the formulation and evaluation of water and related land resources implementation studies..." and *guidelines* that "...establish standards and procedures for use by federal agencies in formulating and evaluating alternative plans for water and related land resources implementation studies." It is also DWR policy to adopt, maintain, and periodically update its own economic guidelines, which are consistent with the P&G but can also incorporate innovative methods and tools when appropriate. This policy is necessary because (a) the P&G has not been updated for over 20 years, (b) federal and State economic analyses sometimes have different regional analysis perspectives, and (c) water management projects and programs have become more complex. Economics Analysis Guidelines was developed to assist economists in performing economic analyses and, more importantly, to explain economics concepts, methods, and tools to non-economist staff, program managers, and management within DWR. These guidelines should be used in conjunction with the federal P&G in the preparation of project feasibility and socioeconomic impact analyses. If DWR is partnering with a federal agency during the preparation of a feasibility study, then the P&G will have precedence over these guidelines in determining the federal National Economic Development Plan. However, these guidelines may help DWR identify a "Locally Preferred Plan" that is preferable from a State or local perspective rather than a National Economic Development Plan, which otherwise might have been implemented with strict adherence to the P&G. Economic analysis is a critical element of the planning process, although it is but one of many important elements. Every agency involved in water resource development has its own planning process, which can sometimes be formally defined. For example, the US Army Corps of Engineers (Corps) and US Bureau of Reclamation (Bureau) follow a six-step planning process based upon the federal *P&G*: - Specification of Problems and Opportunities - Inventory and Forecast of Water and Related Land Resource Conditions - Identification of Alternative Plans - Comparison of Alternative Plans - Evaluation of the Effects of Alternative Plans - Selection of Appropriate Plan Within the water management planning process, an increasingly important goal is to plan for solutions that promote the sustainable use of all natural resources to ensure their availability for future generations. The *California Water Plan Update* (Bulletin 160-05, Volume 1, Chapter 2) identifies "Three E's" that are vehicles to sustainability and help ensure that competing needs are met when implementing integrated resources planning—environment, social equity, and economy. Economic analysis can play an important role in evaluating all three: Executive Summary vii - Environmental evaluation: Tradeoffs between the "natural" and "human" environments exist, and these will have to be evaluated for existing and new water uses. For example, water uses that benefit the natural environment must be considered even if they adversely impact agricultural and urban water users. - Social equity evaluation: Water management proposals can affect different groups within society differently, thus the social equity (or environmental justice) implications of these proposals must be evaluated. For example, third party impacts resulting from water transfers from agriculture to accommodate urban growth can disproportionately impact migrant worker communities. - Economic and financial evaluation: This requires an evaluation of all economic costs for structural and non-structural alternatives. These costs include capital, operations, maintenance, and mitigation. Non-monetary costs and benefits must also be taken into account. In addition, identifying how the costs and benefits are allocated among stakeholders is an important component of any plan. Economics Analysis Guidelines discusses the following topics, which are summarized below: - Federal and State Economic Analysis Guidelines - Economic Analysis Methods - Ecosystem Valuation Methods - Economic Analysis Models - Economic Analysis and the Federal Planning Process - Financial Analysis <u>Federal and State Economic Analysis Guidelines</u>. Because DWR often partners with federal agencies, it is critical that we understand and be in compliance with federal guidance. Federal agencies engaged in water and related land resources development must follow the *Principles & Guidelines (P&G)*. All other federal agencies must follow *Circular A-94: Guidelines and Discount Rates for Benefit-Cost Analysis of Federal Programs* (published by the President's Office of Management and Budget, October 29, 1992). Federal agencies may supplement the *P&G* with their own guidelines and procedural manuals. As its name implies, the P&G comprises two parts. The first part of the P&G sets forth principles "...intended to ensure proper and consistent planning by federal agencies in the formulation and evaluation of water and related land resources implementation studies." The second part of the P&G includes guidelines that
"...establish standards and procedures for use by federal agencies in formulating and evaluating alternative plans for water and related land resources implementation studies." 1 ¹ Federal agencies required to follow the *P&G* include the Army Corps of Engineers, Bureau of Reclamation, Tennessee Valley Authority, and Soil Conservation Service (now called the Natural Resource Conservation Service). Included in the first section is the federal objective of water and related land resources project planning: "... to contribute to national economic development (NED) consistent with protecting the nation's environment, pursuant to national environmental statues, applicable executive orders, and other federal planning requirements." The first section identifies four planning accounts which provide a framework for project evaluations. - The national economic development (NED) account displays changes in the net value of the national output of goods and services expressed in monetary units; display of the NED account is required whereas display of the other accounts is discretionary. - The environmental quality (EQ) account displays non-monetary effects on ecological, cultural, and aesthetic resources including the positive and adverse effects of ecosystem restoration plans. - The regional economic development (RED) account displays changes in the distribution of regional economic activity (for example, income, and employment). - The other social effects (OSE) account displays plan effects on social aspects such as community impacts, health, and safety, displacement, energy conservation, and other effects. Key elements of the second section include more detailed discussions of federal planning standards (that is, how to implement the P&G process) as well as specific concepts and procedures for computing NED benefits that are typically expressed in monetary units, for example, municipal and industrial and agricultural water supply, urban and agricultural flood damage, power (hydropower), transportation (inland and deep draft navigation, recreation, and commercial fishing) The second section also discusses EQ evaluation concepts and procedures (for example, developing indicators that measure changes in the physical characteristics of plant and animal species but which are not usually assigned monetary values) as well as procedures for the other two accounts. In addition to federal guidance, DWR relies on its own economics references including the 1968 *Economics Manual* (part of DWR's *Planning Manual Series*) and the 1977 *Draft Economics Practices Manual*. However, both of these references are outdated, and the 1977 draft manual was never formally adopted by DWR. <u>Economic Analysis Methods</u>. Three common economic analysis methods include cost-effectiveness, benefit-cost, and economic impact analyses. The use of one or more of these methods will depend upon the scope and objectives of the analysis as well as the available data. - Cost-effectiveness is the least comprehensive analysis that identifies the least costly method for achieving specific physical objectives. - Benefit-cost analysis determines whether the direct social benefits of a proposed project or plan outweigh its social costs over the analysis period. Such a comparison can be displayed as either the quotient of benefits divided by costs (the benefit/cost ratio), the difference between benefits and costs (net benefits), or both. A project is economically justified if the present value of its benefits exceeds the present value of its costs over the life of the project. - Socioeconomic impact analysis is broader in scope because it identifies the direct and indirect (secondary) positive and negative effects of an action or project. Executive Summary ix Ecosystem Valuation Methods. Water resource management projects and programs are becoming more multi-objective, and often one of those objectives is ecosystem restoration. For most objectives, monetary benefits can be reasonably estimated (for example, water supply and quality, hydropower, flood damage reduction, recreation). However, for ecosystem restoration, the economic evaluation is much more difficult. How can monetary benefits be assigned to ecosystem resources? Ecosystems perform a multitude of complex and interrelated functions that not only provide basic biological support but also provide valuable goods and services to society (for example, enhanced water supply and quality, flood damage reduction, recreation). If these goods and services can be identified and measured, then it may be possible to place monetary values on them using market or non-market valuation methods. However, if these ecosystem goods and services are monetized, the resulting values should not be interpreted as the total value of the ecosystem but rather of the particular services it provides for humans. Federal guidance does not currently allow for the monetization of ecosystem benefits; instead, ecosystem benefits must be evaluated using cost-effectiveness methods which may be combined with benefit-cost or tradeoff analyses if other monetized benefits (such as water supply or flood damage reduction) are provided by a project. Economic Analysis Models. For economic feasibility analyses, models have been developed by different organizations for specific project purposes (water supply reliability, ecosystem restoration, flood damage reduction, and water quality improvement). These models are used to determine the economic justification of a proposed project through benefit-cost or cost-effectiveness analyses. Some of these models are also used to provide critical information for statewide water planning, such as forecasting urban and agricultural water demands for the California Plan Update (Bulletin 160 series). Economic analyses generally focus on the primary, or direct, effects of proposed plans, which form the basis of project benefit-cost analyses. However, these direct effects can have ripple (indirect) effects throughout an economy. Input/output (I/O) analysis is a quantitative description of the relationship among industries within the economy; it is an excellent tool for providing a comprehensive description of the economy and identifying secondary economic impacts. Thus, I/O models (such as IMPLAN) are informative for estimating regional impacts that can be included in federal investigations (the "regional account") as well as project environmental impact reports/statements. Table ES-1 summarizes various economic analysis models and their analysis. Χ Table ES-1 Economic analysis models and analysis objectives | | | Socioeconomic | | | | | |--|--------------------------|-----------------------|-----------|-------------|--------------------|--| | Organizations/
models | Water supply reliability | Ecosystem restoration | | | impact
analysis | | | DWR | ronability | 100101411011 | 100001011 | improvement | , | | | Least Cost Planning
Simulation (LCPSIM) | X | | | | | | | California Agriculture (CALAG) | X | | | | | | | Net Crop Revenue
Models (NCRM) | X | | X | | | | | Corps | | | | | | | | IWR MAIN | Χ | | | | | | | IWR PLAN | | X | | | | | | HEC FDA | | | Χ | | | | | FEMA | | | | | | | | HAZUS | | | X | | | | | Riverine B/C | | | X | | | | | SWRCB | | | | | | | | Lost Beneficial Use
Value Calculator | | | | X | | | | MWD/Bureau | | | | | | | | Salinity Impacts
Economics Model | | | | Χ | | | | IMPLAN I/O Analysis | | | | | X | | Economic Analysis and the Federal Planning Process. The culmination of the federal planning process is the selection of a plan or the decision to take no action. The Corps has identified the following types of plans: - NED Plan: Includes single project purposes, such as water supply or flood damage reduction, where project outputs can be measured in dollars and project selection is based on maximizing net monetary benefits. - National Ecosystem Restoration (NER) Plan: Includes single project purpose of ecosystem restoration projects where project outputs (for example, increases in habitat) are measured in non-monetary units and project selection is based on "reasonably" maximizing ecosystem restoration benefits.² The analysis is more subjective in that it does not result in the unique identification of a "best" plan, but the Corps does have an accepted methodology to determine the relative performance of these types of projects using cost-effectiveness and incremental-cost analyses. Executive Summary xi ² The US Bureau of Reclamation currently does not have the authority to formulate NER plans. - Combined NED/NER Plan: Includes projects which have both NED and NER objectives. Recommendations for multipurpose projects will be based on a combination of NED benefit-cost analysis and NER cost-effectiveness and incremental cost analyses and possibly tradeoff analyses between these two outputs. - Locally Preferred Plan (LLP): Projects may deviate from the NED, NER, or combined NED/NER plans if requested by the non-federal sponsor. For example, if the sponsor prefers a more costly plan and the increased scope of the plan is not sufficient to warrant full federal participation based on the NED analysis, the LLP may be approved as long as the sponsor pays the difference in costs between the NED (or NED/NER) plans and the LPP. DWR's economists follow economic guidance set forth in the P&G because it is relevant to DWR studies. First, if DWR is a partner with a federal agency on a study or project, then federal guidelines must be followed in order to determine the federal interest in the project and, consequently, its eligibility for federal funding. However, because the federal interest is focused primarily upon the NED account, DWR should also broaden the economic analysis to include regional economic development or other social effects (the RED and OSE accounts), which can significantly assist in the decision-making process. The RED account
is particularly important if a proposed plan will have significantly different regional effects (for example, Northern California vs. Southern California) that might otherwise be irrelevant to the NED national perspective. The full evaluation of all four accounts for alternative plans may lead DWR to recommend an LLP that is different than the NED Plan. <u>Financial Analysis</u>. The objective of financial analysis is to determine financial feasibility (that is, whether someone is willing to pay for a project and has the capability to raise the necessary funds). A financial analysis answers questions such as, Who benefits from a project? Who will repay the project costs, and are they able to meet repayment obligations? Will the beneficiaries be financially better off compared to what they will be obligated to pay? Within DWR, the State Water Project Analysis Office performs financial feasibility analyses for proposed SWP facilities. The test of financial feasibility is passed if: (a) beneficiaries are able to pay reimbursable costs for project outputs over the project's repayment period, (b) sufficient capital is authorized and available to finance construction to completion, and (c) estimated revenues are sufficient to cover allocated costs over the repayment period. Financial costs are the actual expenditures, "out of pocket" costs that are required to construct and operate a project. Financial costs can be grouped into two main categories—capital and OM&R (operation, maintenance, and replacement). Capital costs are nonrecurring costs required to construct a project from the inception of planning to completion of construction. OM&R costs occur continuously or periodically and are incidental to project operations, such as electric power for pumping, materials, and supplies used in maintenance and repair, and project administration. Cost allocation is the process by which financial costs of a project are distributed among project purposes. There are various cost allocation methods, including Separable Costs-Remaining Benefits (SCRB), Alternative Justifiable Expenditures, and Proportionate Use of Facilities. However, the most commonly used method is the SCRB method, which distributes costs among the project purposes by identifying separate costs and allocating joint costs or joint savings in proportion to each purpose's remaining benefits. The SCRB method is commonly applied to SWP water storage dams and reservoir projects. xii Executive Summary #### **Acronyms** AAUH average annual habitat unit AW applied water B/C benefit/cost Bureau US Bureau of Reclamation CALAG California Agriculture model COP certificate of participation Corps US Army Corps of Engineers CVP Central Valley Project CVPM Central Valley Production Model DWR California Department of Water Resources EQ environmental quality ETAW evapotranspiration of applied water EWMP efficient water management practices FDA Flood Damage Assessment FDR Flood Damage Reduction FEMA Federal Emergency Management Agency GAMS General Algebraic Modeling System HEC Hydrologic Engineering Center I/O Input/output analysis IRR internal rate of return IWR Institute for Water Resources (Corps)LBUVC Lost Beneficial Use Value Calculator LCCA Life Cycle Cost Analysis LCPSIM Least Cost Planning Simulation Model LLP Locally Preferred Plan MWD Metropolitan Water District of Southern California NCRM Net Crop Revenue Model NED National Economic Development NER National Ecosystem Restoration OMP&R operation, maintenance, power, and replacement OPR Office of Planning and Research OSE other social effects P&G Economics and Environmental Principles and Guidelines for Water and Related Land Resources Implementation Studies PFP probable failure point PMP Positive Mathematical Programming PNP probable non-failure point RED regional economic development SCRB Separable Costs-Remaining Benefits SWP State Water Project SWRCB State Water Resource Control Board TDS total dissolved solids ### **Chapter 1** #### Introduction Economic analysis is a critical element of the water resources planning processes because it not only evaluates the economic justification of alternative plans but it can assist in plan formulation. Although economic analysis is traditionally performed by economists, the implications of the economic analysis (which often can dictate whether a project is implemented) make it imperative that the concepts, methods, and tools used in the economic analysis be understandable to (a) the other specialists involved in the feasibility studies, (b) management who must make a decision concerning the proposed project, and (c) the various stakeholders who are involved in the planning process and who will ultimately be affected by the project. Water resource projects are increasingly becoming more complex, requiring more difficult economic analyses. Projects now tend to have multiple purposes and affect many diverse stakeholders. Thus, public involvement and potential sources of funding are also more complex. And if all that isn't tough enough, traditional methods of performing economic analysis often do not provide reliable means for quantifying important categories of benefits that these projects may provide (such as ecosystem restoration). In the California Department of Water Resources (DWR), the Chief of the Economic Analysis Section (EAS) of the Division of Planning and Local Assistance is responsible for ensuring that appropriate practices are used for all economic analyses conducted within DWR, either through direct supervision or review of the work managed by others, including consultants. The EAS Chief and staff should be briefed early in the planning process by program managers regarding the objectives of their studies and any required economic analyses. The EAS Chief or staff will then prepare scopes of work presenting the appropriate methods and tools to be used for the economic analysis and its data and time requirements or review the scopes of work that may have been prepared by others, including consultants, and suggest changes as appropriate. However, the program manager, project manager, or team lead remains ultimately responsible for ensuring that appropriate economics practices are followed. #### **Purposes of DWR Economic Analysis Guidelines** The purposes of these guidelines are to: - make economic analysis more understandable to other specialists, management, and stakeholders, - identify emerging methods of performing economic analysis, particularly those involving benefit assessment for project outputs not usually assigned monetary values, - describe the basic economic analysis concepts, methods and tools used in water resource planning, and - provide examples of various types of economic analyses. Chapter 1 Introduction 1 These guidelines will not, however, provide step-by-step instructions for performing economic analysis. Numerous other sources are available that provide this level of detail, including the federal *Economic and Environmental Principles & Guidelines for Water and Related Land Resources Implementation Studies* (*P&G*) and DWR's 1977 *Draft Economics Practices Manual*. These will be referenced in these guidelines for those wishing greater detail on how to perform actual evaluations (for example, the estimation of urban or agricultural water supply benefits). #### **Economic Analysis and the Planning Process** As mentioned above, economic analysis is a critical element of the planning process, although it is but one of many important elements. Every agency involved in water resource development has its own planning process, which can be sometimes a formal process. For example, the US Army Corps of Engineers (Corps) and US Bureau of Reclamation (Bureau) follow a six-step planning process based upon the federal P&G: - Specification of Problems and Opportunities, - Inventory and Forecast of Water and Related Land Resource Conditions, - Identification of Alternative Plans, - Comparison of Alternative Plans - Evaluation of the Effects of Alternative Plans, and - Selection of Appropriate Plan.³ An abundance of written guidelines has been promulgated for Corps planners to follow. Within DWR, the planning process is just as important, but has been less formal than the federal process. However, whether formal or not, there is no such thing as "the planning model." A more comprehensive model of the planning process may include the following steps: - 1) Problem diagnosis - 2) Goal articulation - 3) Prediction and projection - 4) Alternative development - 5) Feasibility analysis - 6) Evaluation and selection of recommended alternative - 7) Implementation - 8) Performance evaluation 2 Chapter 1 Introduction ³ USACE, *Planning Manual*, November 1996, pg. 13. ⁴ For example, see USACE, Regulation No. 1105-2-100, *Planning Guidelines Notebook*, April 22, 2000. Within the water management planning process, an increasingly important goal is to plan for solutions that promote the sustainable use of all natural resources to ensure their availability for future generations. The *California Water Plan Update* (Bulletin 160-05, Volume 1, Chapter 2) identifies "Three E's" that are vehicles to sustainability and help ensure that competing needs are met when implementing integrated resources planning—environment, social equity and economy. Economic analysis can play an important role in evaluating all three: - Environmental evaluation: Tradeoffs between the "natural" and "human" environments exist, and these will have to be evaluated for existing and new water uses. For example, water uses that benefit the natural environment must be considered even if they adversely impact agricultural and urban water users. - Social equity evaluation: Water management proposals can affect different groups within society differently, thus the social equity (or environmental justice) implications of these proposals must be evaluated. For example, third party impacts resulting from water
transfers from agriculture to accommodate urban growth can disproportionately impact migrant worker communities. - Economic and financial evaluation: This requires an evaluation of all economic costs for structural and non-structural alternatives. These costs include capital, operations, maintenance, and mitigation. Non-monetary costs and benefits must also be taken into account. In addition, identifying how the costs and benefits are allocated among stakeholders is an important component of any plan. Chapter 1 Introduction 3 #### **Economic Analysis vs. Financial Analysis** A common misconception is that economic and financial analyses are the same. Although both are required to determine overall project feasibility and sometimes use the same data, they are conceptually different types of analyses. Table 1-1 summarizes the differences between economic and financial analyses. Table 1-1 Comparison of economic vs. financial analyses | | - | | |---|---|--| | | Economic analysis | Financial analysis | | Analysis perspective | Can vary from individuals,
communities, state, and/or
national; DWR uses statewide
perspective | Project beneficiaries | | Evaluation period | Economic life of project (usually 50 to 100 years) | Bond repayment period (usually 20 years) | | Adjustment for inflation | Exclude inflationary effects; price changes different from inflation can be included (escalation) | Include inflationary effects | | Project input valuation | Project inputs valued using their economic opportunity costs ^a | Project inputs valued using their purchase costs | | Adjustment for benefits and costs over time | Determine present values using economic discount rate | Determine present values using financial discount rate | | Discount rate | Economic discount rate; real rate of return (excluding inflation) that could be expected if money were invested in another project; DWR currently uses 6% | Financial discount rate; financial rate of return (including inflation) that could be expected if money were invested in another project; DWR uses expected interest rate of bonds sold to finance project | | Interest paid on borrowed funds during construction | Not included (financial cost) | Included; DWR uses State revolving fund cost | | Forgone investment value during construction | Included; real rate of return that could be expected if construction funds were invested in another project (opportunity cost) | Not included | | Financial costs | Not included | Included | a. Opportunity cost is the productivity forgone by not investing in the next optimal project. The value of the sacrificed productivity is determined by the monetary value placed on the output of the alternative project. For example, assume that a particular input can be used on either Project A or B. If it's used for Project A, it will create a net benefit of \$100 and if it's used for Project B, \$150. The purchase cost of this input is \$50. For an economic analysis, the opportunity cost of using this input for Project A is the net benefit forgone of not using the input on Project B, or \$150. However, for a financial analysis of Project A, only the purchase cost (\$50) is used. For an economic analysis, it is often difficult to determine what these opportunity values are, so purchase costs usually are used as a "proxy." 4 Chapter 1 Introduction The objective of economic analysis is to determine if a project represents the best use of resources over the analysis period (that is, the project is economically justified): The test of economic feasibility is passed if the total benefits that result from the project exceed those which would accrue without the project by an amount in excess of the project costs. It is important that the comparison be *with* and *without* rather than *before* and *after* because many of the after effects may even occur without the project and can thus not properly be used in project justification. Economic justification is contingent on engineering feasibility because a project incapable of producing the desired output is not going to produce the benefits needed for its justification.⁵ The economic analysis should answer questions such as should the project be built at all, should it be built now, or should it be built to a different configuration or size and will the project have a net positive social value for Californians irrespective of to whom the costs and benefits accrue. Three common methods of economic analysis are cost effectiveness, benefit-cost, and socioeconomic impact analyses. The objective of financial analysis is to determine financial feasibility (that is, whether someone is willing to pay for a project and has the capability to raise the necessary funds). The test of financial feasibility is passed if (a) beneficiaries are able to pay reimbursable costs for project outputs over the project's repayment period, (b) sufficient capital is authorized and available to finance construction to completion, and (c) estimated revenues are sufficient to cover allocated costs over the repayment period. Thus, a financial analysis answers questions such as, Who benefits from a project? Who will repay the project costs? Are they able to meet repayment obligations? Will the beneficiaries be financially better off compared to what they will be obligated to pay? Within DWR, the State Water Project Analysis Office performs financial feasibility analyses for proposed SWP facilities. Some significant differences between economic and financial analyses include: #### **Economic Analysis** - Although economic analyses can be evaluated from many different perspectives (individuals, communities, etc.), DWR conducts these analyses from a statewide perspective. - Evaluation period is the economic life of the project (for example, 50 yr). - Project benefits and capital and annual operation costs are estimated in uninflated dollars. - Benefits and costs are adjusted to show expected differences in their relative economic value over time.⁶ - Economic discount rate is applied to account for time value of project costs and economic benefits (or avoided economic costs) produced by the project. - Forgone investment cost during construction are included (opportunity cost of investment). - Project inputs are valued at their economic opportunity cost. - Financing costs are not included. Chapter 1 Introduction 5 ⁵ James and Lee (1971) *Economics of Water Resources Planning*, pg. 161. ⁶ Prices used in an economic analysis are held constant over time, except for items that are expected to experience changes in prices different from the general inflation rate. A differential price level increase is called escalation ⁷ Opportunity cost is the productivity forgone by not investing in the next optimal project. The value of the sacrificed productivity is determined by the monetary value placed on the output of the alternate project. #### **Financial Analysis** - Evaluation is from the perspective of parties expected to pay their allocated costs. - Evaluation period is the bond repayment period (for example, 20 years). - Project costs are expected monetary outlays to implement and operate the project. - Project income and capital and annual operation costs are estimated in inflated dollars. - Income and costs are adjusted to show expected differences in their relative market value over time. - Expected interest rate of bonds sold to finance the project is used as the time value of project costs. - Expected financial rate of return on alternative investments is used as the time value of income (or cost savings) produced by the project. - Interest paid during construction is included (State revolving fund cost). - Project inputs are valued at their purchase cost. - Bond sale and service costs are included. It is possible for projects to be economically feasible but financially infeasible, or vice versa. For example, a project can be shown to have economic benefits that exceed costs at the statewide level, but there may be no sponsors willing or able to finance it. On the other hand, it may not be possible to demonstrate positive net economic benefits for a project, but a sponsor may still be willing to finance and implement the project. #### **Application of Economic Analysis at DWR** Economic analysis has many important applications within DWR, including: - SWP facilities' feasibility analysis. DWR is continuously engaged in evaluating improvements to the facilities and programs of the SWP. Economic analysis is used to determine the net benefits of these facilities and programs as well as the socioeconomic impact upon local communities and the service areas receiving additional water supplies. Although historically such economic evaluations have focused upon structural water management facilities, the significant environmental, social, and financial challenges to building large structural projects has increased the emphasis on non-structural solutions, such as intra- and inter-regional water transfers and facility operational changes. - Non-SWP facilities' feasibility analysis. DWR often partners with the federal government and other government agencies to conduct feasibility studies for projects not necessarily related to the SWP, but which are critical for statewide water management. Recent examples include Shasta Reservoir enlargement studies conducted by the Bureau and flood damage reduction/ecosystem restoration studies conducted by the Corps and the State Reclamation Board. DWR economists assist with the economic analyses required for these feasibility
studies. - Statewide planning. Another key mission of DWR is statewide planning, specifically the preparation of the California Water Plan Update (Bulletin 160 series) every five years. A critical element of the water plan update is the forecasting of regional urban and agricultural water demands and evaluation of alternative response strategies, which can be accomplished using a wide variety of economics modeling tools described below. - Environmental/socioeconomic impact analysis. Federal and State legislation (NEPA and CEQA) require the preparation of environmental impact statements/reports that may require the estimation of socioeconomic impacts of proposed projects and programs. Economic modeling tools described in Chapter 5 can be used to estimate socioeconomic impacts of proposed facilities and programs upon local communities as well as the service areas that will be receiving additional water supplies. These impacts include changes in population, employment, income levels, public service requirements and revenues, etc. - Local assistance loan and grant programs. Beginning with the Davis-Grunsky Act of 1960, DWR has administered numerous programs that provide either low-interest loans or grants to local communities for water conservation, groundwater recharge, or local water supply development purposes. Many of these programs require the local agencies to prepare benefit-cost ratios (verified by DWR economics staff) as a prerequisite for State funding. - **Review of other agencies' reports and analyses.** DWR economics staff review and comment on economic analyses prepared by other agencies, including the review of urban and agricultural water management plans that incorporate economic analysis of proposed projects and programs. - Support for DWR internal management decisions. Because of the extensive system of SWP facilities (dams and reservoirs; pumping plants; aqueducts, canals and pipelines; radial gates, maintenance facilities, etc.) throughout most of the state, DWR management is faced with operational decisions that require the use of resources. These decisions can benefit from economic analysis, although the type of analysis would vary upon individual circumstances. For Chapter 1 Introduction 7 ٠ ⁸ Besides Davis-Grunsky, these include programs associated with Propositions 25 (1984), 44 (1986), 82 (1988), 13 (1999), and 50 (2002). example, in situations where a decision has been made to proceed with a project or program, then a more limited cost-effectiveness analysis may be appropriate to help ensure the best use of resources to achieve that objective. In other cases where a wide range of options is being considered, a more intensive benefit-cost analysis may be more effective. In the past, DWR economics staff have prepared analyses of (a) building a centralized maintenance facility for the repair and painting of radial gates along the California Aqueduct vs. repairing and painting them in place; (b) the addition of an afterbay for the Edmonton Pumping Plant, and (c) moving the Southern Field Division headquarters to a different location. 8 Chapter 1 Introduction # Chapter 2 Federal and State Economic Analysis Guidelines Both the federal and State governments (including DWR) have developed guidelines and procedures on how the various agencies are expected to perform economic analyses. Although much of the guidelines were developed more than 20 years ago, many of the concepts and methods are still relevant. They are essential to ensure that staffs performing project feasibility studies are following appropriate and consistent procedures. These guidelines also help managers better understand the results of economic analyses. The economic analysis guidelines are summarized below. Because DWR often partners with federal agencies, it is critical that we understand and be in compliance with federal guidelines. #### **Federal Economic Analysis Guidelines** Economic analyses performed by federal agencies engaged in water and related land resources development <u>must</u> follow the *Economic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation Studies* (*P&G*) adopted by the U.S. Water Resources Council on March 10, 1983. All other federal agencies must follow *Circular A-94: Guidelines and Discount Rates for Benefit-Cost Analysis of Federal Programs*, which was published by the President's Office of Management and Budget (October 29, 1992). #### **Principles and Guidelines** As its name implies, the *P&G* comprises two parts. The first part sets forth *principles* that are "…intended to ensure proper and consistent planning by federal agencies in the formulation and evaluation of water and related land resources implementation studies." The second part includes guidelines that "…establish standards and procedures for use by federal agencies in formulating and evaluating alternative plans for water and related land resources implementation studies." Thus, the first part essentially establishes project planning policies, and the second part discusses the "how to" procedures. Included in the first section is the federal objective of water and related land resources project planning: "... to contribute to national economic development (NED) consistent with protecting the nation's environment, pursuant to national environmental statues, applicable executive orders, and other federal planning requirements." This section identifies the four federal planning accounts that provide a framework for the evaluation and display of effects of alternative plans. - The **National Economic Development** (**NED**) **account** displays changes in the economic value of the national output of goods and services expressed in monetary units. - The **Environmental Quality** (**EQ**) **account** displays non-monetary effects on significant natural and cultural resources. ⁹ Federal agencies required to follow the P&G include the US Army Corps of Engineers, Bureau of Reclamation, Tennessee Valley Authority, and Soil Conservation Service (now called the Natural Resource Conservation Service). Copies of the P&G (plus related Corps planning guidelines) can be found at: http://www.usace.army.mil/cw/cecw-cp/library/planlib.html - The Regional Economic Development (RED) account shows changes in the distribution of regional economic activity that result from each alternative plan using nationally consistent projections of income, employment, output, and population. - The **Other Social Effects (OSE) account** shows plan effects from perspectives that are relevant to the planning process, but are not reflected in the other three accounts (such as urban and community impacts, life, health and safety factors, displacement, long-term productivity, and energy requirements and conservation). The NED account is required. Other information that is required by law or that will have a material bearing on the decision-making should be included in the other accounts, or in some other appropriate format used to organize information on effects. A plan recommending federal action is the alternative plan with the greatest net economic benefit consistent with protecting the nation's environment (the NED plan), unless the Secretary of a department or head of an independent agency grants an exception to this rule. Key elements of the second section include more detailed discussions of federal planning standards (that is, how to follow the P&G process) as well as specific concepts and procedures for computing NED benefits (municipal and industrial and agricultural water supply, urban and agricultural flood damage, power [hydropower], transportation [inland and deep draft navigation, recreation and commercial fishing]), which are typically expressed in monetary units. This section also discusses EQ evaluation concepts and procedures (for example, developing indicators that measure changes in the physical characteristics of plant and animal species but which are not usually assigned monetary values) as well as procedures for the other two accounts. Federal agencies may supplement the P&G with their own guidelines and procedural manuals. The Corps is an excellent example. Its $Planning\ Guidelines\ Notebook$ (plus an abundance of guidelines letters, engineering regulations, engineering circulars, and engineering manuals) contain specific policies and detailed procedures for conducting Corps planning studies that are in compliance with the P&G. The Corps' planning process is discussed in more detail in Chapter 6. Although the P&G represented the state-of-the art when adopted in 1983, it has come under increasing criticism because of its focus upon the NED account and what is often perceived as inadequate attention to the environmental and other accounts. ¹⁰ In 1999, the National Research Council recommended "...that the federal *Principles & Guidelines* be thoroughly reviewed and modified to incorporate contemporary analytical techniques and changes in public values and federal agency programs." ¹¹ This criticism is particularly relevant given the multi-objective nature of water resources projects today and the need to incorporate—and thus better evaluate—environmental and other types of benefits. These issues are discussed in Chapter 6. - ¹⁰ In comparison, the *P&G's* predecessor (the 1971 *Principles & Standards for Planning Water and Related Land Resources*) gave equal weight to all four accounts. ¹¹ NRC, Risk Analysis and Uncertainty in Flood Damage Reduction Studies, pg. 19. #### Circular A-94 The President's Office of Management and Budget published *Circular A-94* ¹² to "...promote efficient resource allocation through well-informed decision-making by the Federal Government. It provides general guidelines for conducting benefit-cost and cost-effectiveness analyses." *Circular A-94* applies to all federal agencies except those following the *P&G*. As with the *P&G*, *Circular A-94* sets forth general
principles (for example, when to use benefit-cost analysis vs. cost-effectiveness analysis) and more specific guidelines (for example, identification and measurement of benefits, treatment of inflation, discount rates, etc.) for economic analyses. In addition, *Circular A-94* provides special guidelines for public investment, regulatory impact analysis, and lease-purchase analyses. *Circular A-94* Appendices A and B provide definitions and additional guidelines for discounting. Appendix B provides updated Treasury interest rates. #### **State Economics Analysis Guidelines** Although there is no economics guideline publication for State agencies that is comparable to the federal P&G, some agencies have adopted their own. For example, DWR, the State Water Resource Control Board (SWRCB), and the Office of Planning and Research (OPR) have published economic guidelines for use within their own departments or for use by other State and regional agencies. #### **California Department of Water Resources** DWR economists follow economic guidelines set forth in the *P&G*. However, DWR has published its own economics guidelines dating back to 1968 when an *Economics Manual* was included as part of DWR's *Planning Manual Series*. ¹³ This economics manual was to serve "...as a source of reference not only for economic aspects of planning, but also for all economic studies undertaken by DWR." Key elements of this first manual included framework and standards for economic analysis, concepts, and important factors of benefit analyses, economic justification policies, economic analysis methods, definitions, benefit measurement techniques, types of water project benefits, financial feasibility analyses. In January 1977, DWR released a revision to the *Economics Manual*—the draft *Economics Practices Manual*. Although never finalized, it serves as a useful reference manual. This revision incorporated much of the information from the first manual, but added several new topics reflecting broader planning concerns such as "...the display of monetary and non-monetary benefits and costs associated with environmental considerations and the inclusion of secondary impacts involving regional analysis, interindustry relationships, community and social-personal impacts, and so on." Additional sections were added concerning values in water planning, forecasting techniques, demand and price elasticity, selection of alternatives, water quality assessments, and uncertainty management. More detail was also included concerning "how to" estimate water project related benefits compared to the primarily conceptual discussions of benefit evaluation in the first economics manual. This manual was published when the 1971 *Principles and Standards* were still in effect, and it recommended procedures similar to those federal guidelines. Hard copies of the 1968 and 1977 manuals can be found in the Economic Analysis Section of the Division of Planning and Local Assistance. ¹² Copies of OMB Circular <u>A-94</u> can be obtained at http://www.whitehouse.gov/omb/circulars/index.html. ¹³ CA DWR, Planning Manual: Economics, August 1968. Other manuals included Design and Cost Data, Fish and Wildlife, Geology, Ground Water Hydrology, Land Utilization, Recreation, Reports, Sedimentation, Surface Water Hydrology, Water Quality and Water Utilization. #### **State Water Resources Control Board** The SWRCB's Office of Water Recycling published the *Interim Guidelines for Economic and Financial Analyses of Water Reclamation Project* in February 1979. These guidelines were developed to (1) elaborate on the US Environmental Protection Agency regulations and to make them specific to reclamation projects and (2) assist engineers and financial advisors in performing appropriate economic and financial evaluations, especially those applying for grants. These guidelines are well written and include example formats for setting up analyses as well as numerical examples. However, the guidelines have not been updated. #### Governor's Office of Planning and Research OPR published *Economics Practices Manual:* a Handbook for Preparing an Economic Impact Assessment in 1978. The purpose of this manual is to assist local officials in assessing the socioeconomic impacts of land use decisions. These impacts include changes in population, employment, income, housing, land use, and fiscal effects (public service costs and revenues). This manual contains very specific "how to" instructions as well as detailed example calculations. Socioeconomic impacts are not usually included in benefit-cost analyses (which focus upon primary project benefits and costs), but they are critical to regional analyses, particularly growth-inducing impacts of (a) water project construction in a local community and (b) water deliveries to water-deficient service areas. This manual has not been updated. Hard copies of the SWRCB and OPR manuals can be found in the Economic Analysis Section of DWR's Division of Planning and Local Assistance. ## **Chapter 3 Economic Analysis Methods** Three common economic analysis methods are cost- effectiveness, benefit-cost, and socioeconomic impact analysis. A cost-effectiveness analysis identifies the least costly method for achieving specific physical objectives. A benefit-and-cost analysis determines whether the social benefits of a proposed project or plan outweigh its social costs over the analysis period. Such a comparison can be displayed as either the quotient of benefits divided by costs (the benefit-cost ratio), the difference between benefits and costs (net benefits), or both. A project is economically justified if the present value of its benefits exceeds the present value of its costs over the life of the project. Socioeconomic impact analysis is broader in scope because it identifies the direct and indirect (secondary) positive and negative effects of an action or project. The use of one or more of these methods will depend upon the scope and objectives of the analysis as well as the available data. #### **Cost-Effectiveness Analysis** As the name implies, cost-effectiveness analysis focuses upon costs of achieving or exceeding an objective that can be expressed in specific, non-monetary terms (acre-feet, mg/L, habitat units, etc.). For example, if the objective of the project is to deliver *x* acre-feet of water to a service area per year, then a cost-effectiveness analysis would compare the costs of alternative plans that meet or exceed that objective. Other things being equal, the plan that delivers the specified water quantities at the least cost would be the preferred plan. Although benefit-cost analysis is the primary method used to economically justify a project (as described below), cost-effectiveness analysis can often provide additional information that can serve as a "reality check" for the benefit-cost analysis (for example, Does it make sense?) and has implications for the financial analysis (for example, Can the community really afford the project?). Cost-effectiveness analysis is particularly important when the objective cannot be expressed in monetary terms and therefore cannot be included in a traditional benefit-cost analysis. A good example of this in water resources planning is ecosystem restoration; many projects now include ecosystem restoration either as their primary purpose or include it in a multi-objective project. Although there are techniques to place monetary values on the outputs of ecosystem restoration projects (described in Chapter 4), traditionally these types of projects are evaluated by computing the cost per restored habitat acre or some other physical measure (such as habitat units), and comparing these costs (as well as the incremental changes in costs and outputs among proposed alternatives). Because ecosystem restoration is now a recognized project purpose for the US Army Corps of Engineers (either by itself or combined with other purposes), the Corps' Institute for Water Resources has developed software to perform this type of analysis—IWR PLAN.¹⁴ The costs usually included in a cost-effectiveness analysis include capital and annual operation, maintenance, and replacement. Capital costs refer to the construction or "first costs" of the project, whereas the other costs are annual costs incurred to keep the project operational. If there are other costs imposed upon others as a result of project operations (externalities), then these should be included as well if they can be monetized. As shown in the discounting analysis example in Appendix A, all costs should ¹⁴ This software is available at the IWR Web site: http://www.water-resources.us/index.cfm be discounted back to a base year using the appropriate discount rate.¹⁵ Similarly, when capital costs are expended over a number of years prior to project operation, the costs must be brought forward to the base year using the inverse of the discount rate. #### **Benefit-Cost Analysis** Benefit-cost analysis is the procedure where the different benefits and costs of proposed projects are identified and measured (usually in monetary terms) and then compared with each other to determine if the benefits of the project exceed its costs. Benefit-cost analysis is the primary method used to determine if a project is economically justified. A project is justified when:¹⁶ - estimated total benefits exceed total estimated economic costs, - each separable purpose (for example, water supply, hydropower, flood damage reduction, ecosystem restoration, etc.) provides benefits at least equal to its costs, - the scale of development is such as to provide maximum net benefits (in other words, there are no smaller or larger projects which provide greater net benefits), and - there is no more economical means of accomplishing the same purpose. #### **Decision Criteria** Economic comparisons of projects are most commonly made on the
basis of net benefits, the benefit-cost ratio or the internal rate of return. - Net benefits: the optimum scale of development for a given project occurs at the point where its net benefits are at a maximum. Net benefits are at a maximum when the benefits added by the last increment of a project are equal to the cost of adding that increment. In other words, marginal benefits equal marginal costs. Net benefits are determined by estimating discounted benefits and costs over the study period, and then subtracting the discounted costs from the discounted benefits to obtain discounted net benefits. The net benefit criterion does not take into account the absolute level of costs involved in realizing the net benefits, thus it should be used only when the projects being compared are of similar objectives and size. - Benefit/cost ratio: Benefits and costs can be expressed as a ratio by dividing discounted benefits by discounted costs. A project is economically justified if its B/C ratio is greater than 1.00. The B/C ratio is a measure of relative rather than absolute merit, thus it can be used to select from projects of different scales and objectives. However, the most economic use of a given resource rarely occurs at that scale of development where the B/C ratio is at a maximum. Thus, B/C ratios can be used to select a project from several alternatives, but once an alternative is chosen, a net benefit analysis may be warranted to determine the most economic efficient scale of the selected alternative. In other words, can increasing the size of the selected alternative increase its net benefits? - Internal rate of return: This criterion computes the rate of return, or discount rate, which just equates discounted benefits with discounted costs. If the computed rate of return is greater than a specified discount rate, then the project is determined to be economically justified. For example, DWR is currently using a 6% discount rate. If the IRR of a proposed project is determined to be 4%, then the project would be rejected. In contrast, if the IRR is estimated to be 7%, then the ¹⁵ The base year is the year prior to operations (year zero). See Appendix A for an example of discounting. ¹⁶ DWR Draft Planning Manual: Economics, 1968. project would be economically acceptable. Although the IRR criterion usually produces the same results as the net benefits or B/C criteria, it is possible for the IRR to compute more than one solution depending upon the time stream of benefits and costs. ¹⁷ #### **Types of Benefits** Benefits are the values of goods and services produced by the project and by activities stemming from or induced by the project. Benefits play a critical role in determining the economic justification of a project and in allocating costs among different project purposes and sponsors. There are many different types of benefits, some more easily measured than others, which can complicate a benefit-cost analysis. - Primary vs. secondary. *Primary benefits* are the increased values of goods and services attributable to a project; that is, increases in products or services and/or reductions in costs, damage, or losses to those directly affected by the project (primary beneficiaries). Examples of a water project's products and services include increased water supply and improved water quality, and an example of reduced damage is flood damage reduction. Primary beneficiaries are those parties that directly use the project's outputs (for example, the farmers who receive water supplies to grow crops or the homeowner whose home is protected by a project levee). Secondary (indirect) benefits are the values that accrue to persons other than primary beneficiaries as a result of economic activity induced by or stemming from a project. An example of an "induced by" activity is the increased sales of farm equipment and supplies to growers who receive project water. In contrast, an example of a "stemming from" activity is the additional processing required of many agricultural products. Secondary beneficiaries are persons other than primary beneficiaries to whom net values accrue indirectly as a result of economic activity induced by or stemming from a project. In the above examples, the secondary beneficiaries would include the owners of the farm supplies store and the agricultural products processing plant. Sometimes secondary beneficiaries may be affected negatively by a project. For example, proposals to transfer water supplies from farmers often encounter resistance because of the potential negative effects upon local businesses that supply goods and services used for farm production. Even though the farmers may be compensated for the loss of the water supply (and the resultant loss of crop net income), local business owners may not be compensated for lost sales revenue ("third party" impacts). Only primary benefits are included in benefit-costs analyses because they generally assume full employment; thus, if there were secondary benefits attributable to a project, these benefits could only be achieved if there were offsetting reductions in output in other sectors of the economy. 18 - Tangible vs. Intangible. Tangible benefits, either primary or secondary, can be expressed in monetary terms. Examples include the value of agricultural or urban water supplies or the reduction in flood damage to structures and their contents. Intangible benefits, either primary or secondary, cannot be expressed easily in monetary terms, although there are some techniques that can be used (such as contingent valuation discussed in Chapter 4). Examples include the values enjoyed by individuals as they visit parks and other natural areas or the benefits they derive knowing that these areas are protected even if they have no plans for visiting them ("existence") ¹⁷ Anderson and Settle (1977) *Benefit-Cost Analysis: A Practical Guide*, Chapter 3. ¹⁸ For a more detailed discussion of why secondary benefits are not included in B/C analyses, see Shidong Zhang, Washington State Department of Ecology, "An Evaluation of Probable Benefits and Costs for the Proposed Rule to Establish the Columbia River Water Resources Management Program," December 2004. - value), that these areas are protected for their possible future uses ("option" value), or they are protected for future generations to enjoy ("bequest" value). - Private vs. public. *Private benefits* are obtained from goods and services purchased by individual producers and consumers through "markets". Private goods are those goods where one person's consumption of a good is dependent upon their paying its price, while another person, who does not pay, is excluded from the benefits of using that good. Exchange cannot occur without property rights. Examples include most items exchanged in a market place: food, clothing, automobiles, houses, etc. *Public benefits* are obtained from providing goods and services that are consumed by society as a whole (national defense, police protection, highways, parks, etc.). Public goods usually are not exchanged in a market place, and consumption of these goods by one individual does not preclude consumption by other individuals. Finally, other benefit distinctions include whether they are short- or long term and their geographic scope (local, regional, statewide, or national). 19 #### **Primary Benefit Measurement Methods** Primary benefits are the increased values of goods and services attributable to a project; that is, increases in products or services and/or reductions in costs, damage, or losses to those directly affected by the project (primary beneficiaries). The economic value of a good or service to a person who is a buyer is measured by the maximum amount of other things that he or she is willing to give up in order to acquire that good or service. In a barter society, this trade-off is obvious. An example is when a person gives up three units of good A in order to obtain one unit of good B. However, in market economies, dollars (or other forms of currency) are the accepted indicator of economic value because the amount of dollars a person is willing to pay for an item indicates how much of other goods and services he or she is willing to give up for that particular item. In short, the economic value of a good to a buyer is equal to his or her "willingness to pay."²⁰ Because projects proposed by DWR (water supply, flood damage reduction, hydropower, restored habitat, etc.) can provide both private and public benefits, a number of market and non-market methods for estimating the public's "willingness to pay" for the outputs of these projects can be used, including: revealed willingness to pay (based upon market price indicators); imputed willingness to pay (based upon avoided costs); expressed willingness to pay (utilizing surveys); and benefit transfers. The application of these methods depends primarily upon the type of benefit that is being evaluated and the data that is available which can be used to quantify and value the resource. Each of these methods has its own data requirements, advantages, and disadvantages. ¹⁹ See the discussion of planning time horizons and analysis perspectives in Appendix A. ²⁰ A comparable concept is called "willingness to accept" or "willingness to receive," which measures how much an individual who is a seller would accept or receive as payment if he or she could be induced to forgo a good or service. The amount of payment can then be equated to the economic value of the good or service. In short, the economic value to a seller is equal to his or her "willingness to accept." Willingness to pay/accept are discussed further in Appendix A. #### **Revealed Willingness to Pay** Most goods and services are traded in markets; thus, their values can be estimated using market prices. Methods that rely on some form of market prices include market price, productivity, hedonic pricing and travel cost methods. - Market Price Method.
The market price method uses prevailing prices for goods and services traded in markets. For these goods and services, the standard method for measuring the use value of resources traded in the marketplace is the estimation of consumer surplus and producer surplus using market price and quantity data. The total net economic benefit, or economic surplus, is the sum of consumer and producer surplus.²¹ - Productivity Method. The productivity method is used to estimate the economic value of resources that are directly used in the production of commercially marketed goods. If a natural resource can be used as a factor of production, then changes in the quantity or quality of the resource will result in changes in production costs and/or increased production, both of which would affect producer surplus. This method is also called the "factor income" method. For example, improved water quality may lead to greater agricultural productivity—more crops may be grown or greater yields can be obtained from the same amount of irrigated land, both of which would increase income to the grower. - Hedonic Pricing Method. The hedonic pricing method is used to estimate the value of amenities that affect prices of marketed goods. The method is based on the assumption that the prices people pay for goods are influenced by the set of characteristics that people consider important when purchasing the good. The hedonic pricing method is often used to evaluate housing prices based upon characteristics of the house and property, the neighborhood and community, and environmental characteristics. - Travel Cost Method. The travel cost method is used to estimate the value of recreational benefits. The basic premise of the travel cost method is that the time and travel cost expenses that people incur to visit a site represent the "price" of access to the site. Thus, peoples' willingness to pay to visit the site can be estimated based on the number of trips that people make at different travel costs. #### Imputed Willingness to Pay Project benefits can be estimated based on the related concepts of (1) reduction of costs or (2) alternative costs. These methods do not provide strict measures of economic values based on peoples' willingness to pay for a product or service. Instead, they assume that the value of damage avoided by a project or the ability to avoid more costly alternatives can provide "imputed" estimates of how beneficiaries might benefit from proposed projects. - Reduction of cost. A beneficiary's avoidance of direct monetary costs. For example, a flood damage reduction project such as a levee will reduce damage and costs to property owners it protects; this reduction in costs is a benefit. - Alternative cost. If a project enables a primary beneficiary to avoid implementing a more costly project, then the avoided costs of that alternative project can be used as the upper limit on benefits. This alternative must be the least costly alternative that the beneficiaries would actually ²¹ See Appendix A for a more detailed explanation of these concepts. implement if the proposed project is not built. For example, the development of a ground water recharge project by a community may allow it to forgo constructing a more expensive surface water importation project that would have been implemented if the recharge project were not constructed. #### **Expressed Willingness to Pay** Many resources (including water) are not traded in markets and are not closely related to any marketed goods. Thus, people cannot "reveal" what they are willing to pay for them through their market purchases or actions. In these cases, surveys can be used to ask people directly what they are willing to pay based on a hypothetical scenario (contingent valuation) or what they would be willing to accept in compensation if an amenity were to be taken away. Alternatively, people can be asked to make trade-offs among different alternatives, from which their willingness to pay can be estimated (contingent choice). - Contingent Valuation Method. The contingent valuation method is used to estimate economic values for many resources, particularly those with non-use values. With this method, people are surveyed as to how much they would be willing to spend for specific resource. In some cases, people are asked for the amount of compensation they would be willing to accept to give up specific resources. It is called "contingent" valuation because people are asked to state their willingness to pay, contingent on a specific hypothetical scenario and description of the resource. - Contingent Choice Method. The contingent choice method is similar to contingent valuation, in that it can be used to estimate economic values for virtually any resource, and can be used to estimate non-use as well as use values. Like contingent valuation, it is a hypothetical method—it asks people to make choices based on a hypothetical scenario. However, it differs from contingent valuation because it does not directly ask people to state their values in dollars. Instead, the contingent choice method asks the respondent to state a preference between one group of resources or characteristics (at a given price or cost to the individual) and another group of resource characteristics (with a different cost). #### **Benefit Transfers** The benefit transfer method does not specifically measure benefits of proposed projects. Instead, this method is used to transfer values developed by other studies for similar projects to the project currently being evaluated. For example, values for recreational fishing at a particular site may be estimated by applying measures of recreational fishing values from a study conducted at another site. Thus, the basic goal of benefit transfer is to estimate benefits for one context by adapting an estimate of benefits from some other context. Benefit transfer is often used when it is too expensive or there is too little time available to conduct an original valuation study, yet some measure of benefits is needed. The benefit transfer method is most reliable when the original site and the current study site are similar in terms of factors such as quality, location, and population characteristics; when the environmental change is very similar for the two sites; and when the original valuation study was carefully conducted and used sound valuation techniques. #### **Benefits Related to Water Resource Projects** Water resource projects may provide one or several types of benefits, including: - Water supply. Making water available for all uses (urban, agricultural, and environmental) through either structural (dams, reservoirs, aqueducts, etc.) or non-structural (conservation) methods. For urban water supply projects, typical techniques for measuring primary benefits include avoided alternative costs and water market prices where appropriate price data is available. In comparison, for agricultural water supplies (where a direct relationship between water supply and agricultural production can be established), the productivity and avoided alternative costs are the most used methods. Other techniques can be used to estimate environmental water benefits (see Chapter 4). Specific information concerning how to estimate urban and agricultural water supply benefits is found in the *P&G* (sections 2.2.and 2.3) and in the DWR Draft *Economics Practices Manual* (pg. 192 and 196). - Water quality. Improving the quality of water available for all uses (urban, agricultural, and environmental) through either structural (treatment plants) or non-structural (pollution control) methods. For water quality projects, typical techniques for measuring primary benefits include reduction of costs, avoided alternative costs and productivity methods. Specific information concerning how to estimate water quality benefits is found in the *P&G* (sections 2.2.and 2.3) and in the DWR Draft *Economics Practices Manual* (pg. 196). - Hydropower. Generating electrical energy using flowing water. For hydroelectric power projects, typical techniques for measuring primary benefits include avoided alternative costs and market price data. Specific information concerning how to estimate hydropower benefits is found in the *P&G* (section 2.5) and in the *DWR* Draft *Economics Practices Manual* (pg. 213). - Flood damage reduction (flood control). Protecting existing development from flood damage and making flood-prone land more suitable for appropriate development. Typical benefit measurement techniques include reduction in costs and value added (for intensified land uses). Specific information concerning how to estimate flood damage reduction benefits is found in the *P&G* (sections 2.3 and 2.4) and in the *DWR* Draft *Economics Practices Manual* (pg. 216). - Navigation. Improving the transportation of freight and passengers on inland waterways. Typical benefit measurement techniques include avoided alternative costs and productivity. Specific information concerning how to estimate navigation benefits (both inland waterways and deepdraft navigation) is found in the *P&G*, sections 2.6 and 2.7, and in the DWR Draft *Economics Practices Manual*, pg. 222. - Recreation. Improving all forms of outdoor leisure activities associated with a water resource project. Typical benefit measurement techniques include unit day values and travel cost or contingent valuation methods. Specific information concerning how to estimate recreation benefits is found in the *P&G* (section 2.8) and in the DWR Draft *Economics Practices Manual* (pg. 224) using unit day values. Other valuation techniques that can be used for recreation benefits, such as travel cost and contingent valuation, are discussed in Chapter 4. • Ecosystem restoration. The National Research Council defines ecosystem restoration as the "... return of an ecosystem to a close approximation of its condition prior to disturbance." Typically monetary benefits are not assigned to
environmental benefits. Instead, environmental benefits are usually measured in physical units (acres, habitat units, etc.) that can then be used in a cost-effectiveness and/or trade-off analysis. However, non-market evaluation methods are available that can be used to measure at least some aspects of environmental benefits (discussed in Chapter 4). Environmental quality benefits are discussed in the *P&G* (section 3.0). Table 3-1 summarizes the benefit measurement methods that are *typically* used for different water management project purposes. #### Water Demand and Water Use **Water Demand.** The relationship—over a range of water prices—between those prices and quantities of water that would be purchased by willing buyers. Usually an inverse relationship: As price goes up the quantity purchased goes down. This relationship depends upon the marginal value of water to buyers either through final use (e.g., residential use) or as an input to production (e.g., crop irrigation). **Change in Water Demand.** A change in the relationship between prices and quantities caused by a change in the marginal value of water to buyers. This can be caused by a shift in water use technology like moving to high-efficiency irrigation systems, for example. **Water Demand Curve.** The mathematical or graphical representation of the Water Demand relationship. A Change in Water Demand can be represented as a change in the location (that is, intercept) and/or slope of the curve. **Water Quantity Demanded.** The quantity of water that would be purchased by willing buyers at a specified price; represented by a point on the Water Demand Curve. **Change in Water Quantity Demanded.** Change resulting from movement along the Water Demand Curve caused by a change in price or resulting from a shift in the Water Demand Curve caused by a change in the marginal value of water to buyers, or both. **Water Use.** The quantity of water that is used. Use may be less than Water Quantity Demanded due to lack of availability (e.g., rationing during a drought). If Water Use is less than Water Quantity Demanded, the marginal value of water to buyers is greater than its price. ²² More specifically, the NRC defines ecosystem restoration as "...ecological damage to the resource is repaired. Both the structure and functions of the resource are recreated...The goal is to emulate a natural, functioning, self-regulating system that is integrated with the ecological landscape in which it occurs." This differs from *preservation* which involves the management of an existing resource to maintain its good quality natural functions and characteristics; *creation* which brings into being a new ecosystem that previously did not exist on the site.; *enhancement* which is any improvement of a structural or functional attribute; *rehabilitation* which includes improvements of a visual nature to a natural resource or putting it back in "good condition or working order", and *mitigation* which is any action taken to avoid, reduce, or compensate for the effects of environmental damage. NRC, *Restoration of Aquatic Ecosystems*, Glossary. Table 3-1 Water management benefit measurement methods | Benefit | Water management purposes | | | | | | | | |------------------------------|---------------------------|---------|------------|-----------|------------|------------|-------------|-----------| | measurement | Water Water Flood damage | | | Ecosystem | | | | | | methods | supply | quality | Hydropower | reduction | Navigation | Recreation | restoration | Fisheries | | Revealed Willingness to Pay | | | | | | | | | | Market Prices | Χ | | X | | | | | Χ | | Productivity | Χ | Χ | X | | X | | | Χ | | Hedonic Pricing | | | | | | | X | | | Travel Cost | | | | | | Χ | Χ | Χ | | Imputed Willingness to Pay | | | | | | | | | | Reduction in Costs | Χ | Χ | | X | X | X | X | Χ | | Alternative Costs | Χ | Χ | X | X | X | X | X | Χ | | Expressed Willingness to Pay | | | | | | | | | | Contingent Valuation | Χ | | | | | X | Х | Х | | Contingent Choice | Χ | | | | | X | X | Χ | | Benefit Transfers | X | X | X | X | X | X | X | Χ | #### **Types of Costs** Project costs generally can be classified as either capital or annual operating costs. All costs necessary to obtain project benefits over the period of analysis must be included in the cost analysis. For many water supply projects, these can include water storage, conveyance, and treatment costs. Conceptually, all costs in the economic analysis should reflect the opportunity costs of using resources to construct and operate the project. In other words, using the resources for the proposed project means that there is a loss of value elsewhere in the economy. In practical terms, however, the cost information used in the analysis is often limited to the actual purchase expenditures: - Capital. Capital costs are all expenditures necessary to complete the project so operations can commence. Capital costs (for example, construction, "fixed" or "first" costs) include expenditures for land, structures, materials, equipment, and labor, as well as allowances for contingencies. Financial costs (such as interest during construction and long-term debt service interest) are not included, although they are important in a financial analysis. - Operation, maintenance and replacement. These include the project's annual administrative, maintenance, energy and replacement costs and they are often called "variable costs" because they vary with different levels of project output. For example, an aqueduct's energy pumping costs will vary with the amount of water being delivered through the aqueduct. - Externalities. Often the activities of producers or consumers have effects upon others that impose costs (or sometimes benefits) for which no compensation is received. For example, a new levee in community A may increase river stages downstream in community B, which subsequently results in more flood damage in community B. The benefit-cost analysis, which is performed to justify the new levee in community A, should also take into account the cost increases for community B. Unfortunately, many externalities are difficult to identify, quantify, and ultimately, assign monetary values. #### **Trade-off Analysis** Benefit-cost analysis requires that benefits and costs be monetized. However, some types of benefits (such as ecosystem restoration) are not easily expressed in monetary terms. Although there are techniques for monetizing some ecosystem benefits (described in Chapter 4) such that they can be directly incorporated into the benefit-cost analysis, another approach for project evaluation is to use trade-off analysis. Trade-off analysis displays all monetary and non-monetary effects of the project, and the "gains and losses" among different plans can be identified. The Corps' Institute for Water Resources has developed some very sophisticated mathematical methods of trade-off analysis for projects involving ecosystem restoration and more traditional national economic development benefits (for example, water supply and flood damage reduction). Appendix B contains a summary of economic analysis conducted for a proposed Corps and State Reclamation Board flood damage reduction and ecosystem restoration project at Hamilton City, including a trade-off analysis using the "proportion of maximum value" method to normalize monetary and non-monetary benefits (see Table 3-2). - ²³ See USACE (IWR) publication *Trade-off Analysis Planning and Procedures Guidebook* IWR 02-R-2 (April 2002) at: http://www.iwr.usace.army.mil/inside/products/pub/iwrpub.cfm Table 3-2 Hamilton City trade-off analysis proportion of maximum value method | Alternative | Ecosystem restoration | Flood damage reduction benefits | Total annual cost | Sum of weighted products | Ranking | |------------------|-----------------------|---------------------------------|--------------------------|--------------------------|---------| | 1 | [783]
0.8356 | [\$576,000]
0.9983 | [\$2,606,000]
-0.8550 | 0.1386 | 3 | | 4 | [642]
0.6852 | [\$536,000]
0.9289 | [\$2,541,000]
-0.8337 | 0.0668 | 4 | | 5 | [937]
1.0000 | [\$568,000]
0.9844 | [\$3,048,000]
-1.0000 | 0.1588 | 2 | | 6 | [888]
0.9477 | [\$577,000]
1.0000 | [\$2,687,000]
-0.8816 | 0.1836 | 1 | | Weighting factor | 0.50 | 0.08 | 0.42 | | | Source: USACE , Hamilton City Flood Damage Reduction and Ecosystem Restoration Study, see Appendix C. Notes: Actual amounts shown in []. Alt 6 Example = 0.1836 = (0.9477 x 0.5) + (1.0000 X 0.08) + (-0.8816 X 0.42) #### **Distribution Effects** Benefit-cost analysis develops information concerning the economic justification of a project; however, it does not address the distribution of benefits and costs among different groups in society. In other words, are some groups more likely to benefit from a project when compared with others? Does the project result in an *equitable* distribution of benefits and costs? Although it is much more difficult to incorporate distributional effects into benefit-cost analyses, there are techniques for doing so, such as assigning weights to benefits and/or costs.²⁴ Equity issues can be an important consideration for stakeholders and decision-makers, and they are included in environmental documentation (environmental impact reports/environmental impact statements) as "environmental justice." Chapter 3 Economic Analysis Methods ²⁴ See Richard Musgrave, *Public Finance in Theory and Practice*, 1980. ## **Socioeconomic Impact Analysis** Whereas benefit-cost analyses measure changes in resource costs and benefits to primary beneficiaries, socioeconomic impact analyses focus upon changes in regional population and economic activity as well as fiscal impacts upon local governments (changes in public services and revenues). Socioeconomic impact analyses are particularly relevant in evaluating the
effects upon local communities where water resource projects are constructed and operated as well as within the service areas where project supplies are delivered. The results of socioeconomic impact analyses are typically displayed either in the Regional Economic or Other Social Effects accounts (see Chapter 2, Federal and State Economic Analysis Guidelines) and may be incorporated into environmental documentation (such as environmental impact statements/reports). A good reference for conducting socioeconomic impact assessment is the Office of Planning and Research's *Economics Practices Manual* described in Chapter 2. This manual provides step-by-step instructions for estimating population, employment, income, housing, land use/environmental, and fiscal impacts. As discussed in Chapter 5, input/output models can also be used to estimate secondary economic effects such as income and employment. An excellent example of a recent DWR analysis of regional impacts is the *Draft Report on Economic Analyses* (January 2004) prepared for the proposed CALFED In-Delta Surface Storage project. This analysis included the effects of the project upon local employment, income levels, and sales taxes. This report is available at the program's Web site: $\underline{http://calwater.ca.gov/Programs/Storage/InDeltaStorageReports_2003/InDeltaFeasibilityStudies_Jan2004_\underline{.shtml}$ # **Chapter 4 Ecosystem Valuation Methods** For most objectives associated with water management projects, monetary benefits can be assigned that can be directly incorporated into a benefit-cost analysis (for example, water supply and quality, hydropower, flood damage reduction, recreation, etc.). However, for ecosystem restoration, the economic evaluation is much more difficult. How can one possibly place a dollar value on ecosystem resources? Many economists have been reluctant to assign dollar values to ecosystem resources. This reluctance has been further institutionalized by the US Army Corps of Engineers, which requires a cost-effectiveness/incremental-cost approach (that is, changes in cost per acre or habitat unit attributable to different sized plans) in evaluating ecosystem outputs. This approach is required because of the inherent difficulties in assigning monetary benefits to ecosystem outputs. However, this reliance upon only cost-effectiveness has its limitations as well, especially when analyzing multi-objective projects that may affect different types of ecosystems or involve trade-offs among different objectives. ## **Ecosystem Services** Ecosystems perform many complex and interrelated functions which not only provide basic biological support, but also provide valuable goods and services to society. If these societal goods and services can be identified and measured, then it may be possible to value them using one or more of the methods discussed below. Ecosystems provide both *biocentric* and *anthropocentric* types of services. Biocentric (or biological) services are those that benefit the plants and animals inhabiting the ecosystem. Anthropocentric services are those that directly benefit humans, such as the maintenance of water supply quantity and quality, soil and air quality, floodwater storage, recreation, etc. Other human services include the maintenance of genetic information over time (for example, preserving genetic material over time which might lead to new drugs or other products) as well as values that we associate with ecosystems based upon our individual preferences, knowledge, emotions, etc.. This latter group of human services is considerably more difficult to quantify and value compared to the first group. The valuation methods discussed below can best be applied to the first group of human-related services, although some methods (such as contingent valuation) may be applicable for the second group of human services. None of these valuation methods can be applied to an ecosystem's biological services, although tools are available that attempt to measure the physical outputs of ecosystems, such as habitat evaluation procedures. Commonly cited examples of floodplain and wetland services include flood conveyance and storage, erosion control, pollution prevention and control, fish and shellfish production, water supply, recreation, food production, education and research, historical, archaeological values, open space and aesthetic values, timber production, and habitat for waterfowl and other wildlife, including game species. However, even for these services that are easier to assign monetary values, it still may be very difficult to establish relationships among ecosystem structures, functions, and, ultimately, human services. These difficulties arise because of the incomplete scientific understanding of ecological functions and the complex _ Cole, R.A., J.B. Loomis, T.D. Feather, and D.F. Capan. *Linkages Between Environmental Outputs and Human Services*. USACE IWR Report 96-R-6 (Evaluation of Environmental Investments Program), February 1996. production relationships linking them to human uses. Even when there is at least a partial understanding of these relationships, obtaining the necessary data (such as changes in water quality and availability, soil quality, recreation, etc.) can be time-consuming and expensive. Other human services are very difficult, if not impossible, to measure their service outputs, such as the continuation of genetic information or the intrinsic values humans place upon healthy ecosystems. Figure 4-1 hypothesizes what the relationship of these types of services may look like since nobody really knows what the total value of any ecosystem is or the relative size of its biological or human services. This figure indicates that whatever values are derived for ecosystem-related human services, these should not be considered as the "total" value of that ecosystem's services. Figure 4-1 Ecosystem services ## **Monetizing Ecosystem Benefits** If the ecosystem services discussed above can be expressed in monetary terms, then it is possible that they can be directly incorporated into B/C analyses. Some of the services provided by ecosystems are priced in competitive markets and therefore the price paid for that service at least partially reflects the value of that ecosystem service. However, many ecosystem services are not traded in markets because individuals do not own the resources—these are public goods rather than individual goods. The absence of markets does not mean that there is no economic value to the resource. Rather, it means that traditional market measures of value are inappropriate. In these cases, non-market valuation techniques can be used to estimate economic values. Following is a discussion of different methods of valuing ecosystem benefits grouped by the "willingness to pay" categories discussed in Chapter 3: revealed willingness to pay, imputed willingness to pay, expressed willingness to pay, and benefit transfers. The application of these methods for ecosystem benefit valuation is discussed below and summarized in Table 4-1, which follows.²⁶ ### **Revealed Willingness to Pay** Some ecosystem products, such as fish, wood, or berries are traded in markets; thus, their values can be estimated using market prices (market price method). Other ecosystem services, such as clean water, are used as inputs in production, and their value may be measured by their contribution to the value obtained from the final goods (productivity method). However, some ecosystem or environmental services, like aesthetic views or many recreational experiences, may not be directly bought and sold in markets. Even though these services are not bought and sold in traditional markets, it may be possible to estimate their values from prices people are willing to pay in markets for related goods. For example, people often pay a higher price for a home with a view of the ocean (hedonic pricing method), or will take the time and incur expenses to travel to a special spot for fishing or bird watching (travel cost method). #### **Imputed Willingness to Pay** The value of some ecosystem services can be estimated based on the (1) damage to adjacent or downstream properties that would occur if a wetland were lost to development or (2) the costs of replacing ecosystem services with other alternatives that provide similar services. These methods do not provide strict measures of economic values, which are based on peoples' willingness to pay for a product or service. Instead, they assume that the costs of avoiding damages or replacing ecosystems or their services provide useful estimates of the value of these ecosystems or services. If people incur costs to avoid damages caused by lost ecosystem services, or to replace the services of ecosystems, then those services must be worth at least what people paid to replace them. For example, if an existing wetland is to be lost because of development, then its flood protection benefits may be estimated by either (1) the damage that would occur to adjacent or downstream properties if the wetland were to be lost to development, (2) the cost of acquiring or restoring another wetland that will provide the same flood protection services, or (3) the cost of structural infrastructure that would be required in the wetlands absence, such as a retaining wall, levee, or flood detention basin, whichever is less. Much of the information in this chapter is adapted from the website http://www.ecosystemvaluation.org. This Web site, which was developed by Dr. Dennis King, University of Maryland, and Dr. Marissa Mazotta, University of Rhode Island. with funding from the NRCS and NOAA, provides good descriptions of the various valuation methods, including step-by-step instructions and examples. This Web site is written to be understandable for non-economists. ## **Expressed Willingness to Pay** Many ecosystem services are not traded in
markets and are not closely related to any marketed goods. Thus, people cannot "reveal" what they are willing to pay for them through their market purchases or actions, nor is there any circumstantial evidence to infer what they might be willing to pay. In these cases, surveys can be used to ask people directly what they are willing to pay based on a hypothetical scenario (contingent valuation) or what they would be willing to accept in compensation if an amenity were to be taken away. Alternatively, people can be asked to make trade-offs among different alternatives, from which their willingness to pay can be estimated (contingent choice). An example might be surveys to determine the willingness of state residents whether they would be willing to fund restoration efforts for Hetch Hetchy Reservoir. #### **Benefit Transfers** The benefit transfer method is used to estimate economic values for ecosystem services by transferring available information from studies already completed in another location or context. For example, values for recreational fishing in a particular state may be estimated by applying measures of recreational fishing values from a study conducted in another state. Thus, the basic goal of benefit transfer is to estimate benefits for one context by adapting an estimate of benefits from some other context. Benefit transfer is often used when it is too expensive or there is too little time available to conduct an original valuation study, yet some measure of benefits is needed. The benefit transfer method is most reliable when the original site and the current study site are similar in terms of factors such as quality, location, and population characteristics; when the environmental change is very similar for the two sites; and when the original valuation study was carefully conducted and used sound valuation techniques. Although original studies are preferable to benefit transfer, researchers agree that, in the absence of funding and resources needed for conduct of such studies, benefit transfer can provide a reasonable valuation of non-market values provided that the above factors are met. Appendix C contains references of studies and reports which further discuss and provide examples of the valuation of ecosystem services. Table 4-1 Summary of ecosystem valuation methods | Valuation type | Methods | Advantages | Disadvantages | |-----------------------------|-----------------|--|--| | | Market Price | Price, quantity and cost data are relatively easy to obtain | Not applicable to many ecosystem services because of lack of markets | | | | Uses observed data of actual consumer preferences and behavior | True economic value may not be reflected in prices due to seasonal variations and other effects | | | | Uses standard, accepted, economic techniques | Prices may not reflect costs of other resources used to bring ecosystem products to markets | | | | Required cost and production data may be readily available | Limited to those resources that can be used as production inputs | | | - 1 | Uses standard, accepted, economic techniques | Requires information concerning the physical relationship of the resource in the production process | | | Productivity | | If changes in the availability and use of the resource in the production process result in significant changes in the final prices of the final goods, this method becomes more difficult to apply | | Revealed Willingness To Pay | | Uses observed data of actual consumer preferences and behavior | Limited to environmental benefits that can be related to primarily housing prices | | | Hedonic Pricing | Property markets are good indicators of values | Will only capture people's willingness to pay for perceived differences in environmental characteristics | | | | Data on property sales and | Relatively complex to implement and interpret | | | | characteristics are readily available | Requires high degree of statistical expertise | | | Travel Cost | Uses observed data of actual | Complications arise if consumers visit more than one site | | | | consumer preferences and behavior | Assigning the "opportunity costs" of time traveling is difficult | | | | On-site surveys may benefit from large sample sizes | Availability of substitute sites will affect values | | | | Results are relatively easy to interpret | Surveying techniques can introduce biases | | | | and explain | Requires high degree of statistical expertise | | | | | Table 4-1 continues on next page | Table 4-1 Summary of ecosystem valuation methods (continued) | Valuation Type | Methods | Advantages | Disadvantages | |----------------------------|----------------------|---|---| | | Damage Costs Avoided | These methods provide rough indicator of economic value, subject to data constraints or substitutability of related goods and services. | These methods assume that expenditures to repair or to replace ecosystem services are valid measures of the benefits provided, which may not be true. | | | | It is often easier to measure the costs of producing benefits than measuring the values of the benefits themselves. | These methods require information on the substitution between replacement services and the natural ecosystem. | | Imputed Willingness To Pay | Replacement Cost | These approaches are less data-
and resource-intensive. Data or resource limitations may | Substitute goods are unlikely to provide the same types of benefits as the natural resource. | | | Substitute Cost | rule out other valuation methods. | The goods or services being replaced probably only represent a portion of the total value of the natural resource, thus estimated benefits may be underestimated. | | | | | These approaches are only valid if there is evidence that the public would demand the alternative replacement or substitute project. | | | | | Table 4-1 continued on next pag | Table 4-1 Summary of ecosystem valuation methods (continued) | Valuation Type | Methods | Advantages | Disadvantages | |------------------------------|----------------------|---|---| | | | Can be used to estimate the economic value of most goods and services whether they are marketed or not. | There is much debate whether these methods adequately measures peoples' willingness to pay for improvements to environmental quality. | | | Contingent Valuation | Commonly used method for measuring the value of non-use goods and services. | These methods perhaps incorrectly assume that people understand the good or service in question and will | | | | Most appropriate to use when goods
and services can be easily
understood by the public and are
consumed in discrete units (such as | reveal their preferences in a
"contingent" market just as in a real
market. | | Expressed Willingness To Pay | | user days of recreation). | There may be fundamental differences in the way that people make hypothetical decisions relative to the way they make actual decisions (for example, people may not take questions seriously since they will not actually have to pay the stated amounts). | | | Contingent Choice | | The payment question can be phrased as a "willingness to pay" question or as a "willingness to accept compensation" question in cases where an environmental amenity may be given up. In theory the answers to these questions should be the same but often they are not. | | | | | Table 4-1 continued on next page | Table 4-1 Summary of ecosystem valuation methods (continued) | Valuation Type | Advantages | Disadvantages | |-------------------|---|---| | | Typically less costly and time consuming than conducting an original valuation study | Method may not be accurate, unless the original site and site its being compared with have similar location and physical characteristics. | | | Method can be used as a screening technique to determine if a more detailed, original valuation study should be conducted | Existing studies may be difficult to find | | Benefit Transfers | diady directed be confidenced | It is difficult to assess the adequacy of existing studies. | | | | Reporting of existing studies may be inadequate in order to make needed adjustments. | | | | Unit use values may be out-of-date. | ## **Cost-Effectiveness Analysis** Many project planners are reluctant to place monetary values upon ecosystem benefits. The US Army Corps of Engineers, in particular, does not monetize ecosystem benefits but instead relies upon a cost-effectiveness and incremental-cost analysis to formulate and evaluate projects with ecosystem benefits. Cost-effectiveness and incremental cost analysis is a valid tool for evaluating projects with ecosystem benefits, although this type of analysis makes it difficult to evaluate multi-purpose projects that have more traditional monetary benefits
(such as water supply and flood damage reduction) combined with ecosystem restoration benefits. Cost-effectiveness and incremental-cost analyses examine changes in cost and output that result from decisions to implement alternative plans and plan components. Cost-effectiveness analysis (\$/unit) can be used to identify the least-cost plan for producing every attainable level of environmental output (acres, habitat units, etc.), as well as for identifying those plans where more output could be produced for the same or less cost. Incremental cost analysis can assist in determining the appropriate scale of restoration by revealing variations in cost across alternatives. Once these costs are computed, decision makers can explicitly ask, Is this incremental change in output "worth it?" The Corps Institute for Water Resources has developed the IWR-PLAN software specifically to perform cost-effectiveness and incremental-cost analyses.²⁷ #### **Economic Evaluation of Ecosystem Resources—Two Example Analyses** Appendix B presents two federal/State/local studies (2004) that incorporate both National Economic Development (NED) and National Ecosystem Restoration (NER) benefits—the Hamilton City Flood Damage Reduction and Ecosystem Restoration Study and the Colusa Basin Integrated Watershed Management Study. The Hamilton City study was conducted by the US Army Corps of Engineers and the State Reclamation Board. It focuses upon improving flood protection for the Glenn County community of Hamilton City (and surrounding agricultural land) and restoring riparian habitat along the Sacramento River. The Colusa Basin Integrated Watershed Management Plan was conducted by the Colusa Basin Drainage District to evaluate alternative plans for improving flood protection for the City of Willows in western Glenn County along Interstate 5. Willows is subject to frequent flooding from three streams that flow east from the nearby coastal range mountains. This study also evaluated various ecosystem restoration and watershed management measures. An interesting distinction between both of these studies is how the economic analysis is being conducted for the ecosystem measures. Corps guidance does not allow for monetary values to be placed on ecosystem benefits, thus it relied upon a cost-effectiveness/incremental cost analysis of proposed ecosystem measures in order to formulate combined NED/NER plans. In contrast, the Colusa Basin Study directly places monetary values on ecosystem restoration measures and incorporates these values into the net benefits analysis ²⁷ IWR PLAN is available at: http://www.pmcl.com/iwrplan/. A more detailed discussion of the cost-effectiveness and incremental cost analysis can be found in the Corps Institute for Water Resources' report Evaluation of Environmental Investments Procedures Manual, Interim, Cost Effectiveness and Incremental Cost Analysis, May 1995. ## **Chapter 5 Economic Analysis Models** Numerous economic analysis computer software packages and other analytical tools can be used to assist in water resource economic justification and socioeconomic impact analyses ## **Economic Justification** For economic analyses, models have been developed by different organizations for specific project purposes (water supply reliability, ecosystem restoration, flood damage reduction, and water quality improvement). These models are used to determine the economic justification of a proposed project through benefit-cost or cost-effectiveness analyses. Some of these models are also used to provide critical information for statewide planning purposes, such as forecasting urban and agricultural water demands for the California Plan Update (Bulletin 160 series). #### Water Supply Reliability DWR and the US Army Corps of Engineers (Corps) have developed several models for assessing water supply reliability. These include the following: - DWR Least Cost Planning Simulation Model. The Least-Cost Planning Simulation Model is a PC-based simulation/optimization model that assesses the economic benefits and costs of increasing urban water service reliability at the regional level. The primary objective of LCPSIM is to develop a regional water management plan based on the principle of least-cost planning. Under this principle, the cost to be minimized is the sum of two costs: (1) the cost of the water supply reliability enhancement via a response package and (2) the cost of unreliability, recognizing that the latter is inversely related to the former. Because this principle incorporates economic benefits (that is, reducing the cost of unreliability), it is fundamentally different than cost effectiveness, which is based on minimizing the cost of meeting a physical objective (for example, a quantity of water delivered over a specified drought period.) Any incremental change from managing at the least-cost point will, by definition, result in greater economic costs than gains (that is, a loss of economic efficiency). LCPSIM can be used in the California Water Plan Update process to help determine an economically efficient regional urban water management strategy. It can also be used to specify demand reduction response options and optimize supply augmentation response options (or vice versa) as well as estimate the cost in lost economic efficiency of study plans. Key modeling inputs into LCPSIM include Central Valley Project and State Water Project (SWP) water deliveries estimated by CALSIM (a project operations model) and average water use coefficients from the Corps' Institute for Water Resources (IWR-MAIN, described below). LCPSIM is described in more detail under *Models* at the Web site www.economics.water.ca.gov/. - DWR California Agriculture. CALAG is a regional, PC-based model of irrigated agricultural production and economics that simulates the decisions of agricultural producers (farmers) in California. The model, which is still being developed in 2006, assumes that farmers maximize profit subject to resource, technical, and market constraints. Farmers sell and buy in competitive markets, and no single farmer can affect or control the price of any commodity. To obtain a market solution, the model's objective function maximizes the sum of producers' surplus (net - income) and consumers' surplus (net value of the agricultural products to consumers) subject to various technical, market, and institutional constraints. The model can be used to estimate changes in agricultural benefits of alternative water management plans. CALAG is described in more detail under *Models* at the Web site www.economics.water.ca.gov/. The Central Valley Production Model (CVPM) preceded and is now a part of CALAG. - DWR Net Crop Revenue Models. NCRMs are spreadsheet models that estimate average net crop revenues for important crops for recent years in 27 California counties and regions. These models combine data on acres and average yields and prices from more than 100 annual county crop reports with cost information from about 300 University of California Cooperative Extension crop budgets. The spreadsheets price-level adjust cost and gross revenue data to a common year, update interest rates, taxes, and water costs, and then calculate weighted-average estimates of a typical grower's annual net crop revenue (profit or loss) for a 5- or 7-year period. The models include estimates of government support payments for some crops and take into account both cash and non-cash, and fixed and variable costs, for all crops. The spreadsheets also calculate other measures of grower returns, such as contributions to fixed costs, and ability to pay for water. NCRMs were developed for use in DWR Delta Planning Programs and the California Water Plan Update process. Modified versions of these models have also been used to help value the Kern Fan Element of the Kern Water Bank, to help estimate the economic impacts of land retirement programs in the San Joaquin Valley and the Delta, to help value a flood control program, and to help evaluate the economic impacts of a water transfers program. NCRMs could be used in developing information for environmental impact reports and statements and to estimate the economic impact on agriculture of future droughts. Modified versions of NCRMs could be used for financial feasibility analysis—calculating the abilities of farmers and irrigation districts to pay for water from new water projects. The goal of the NCRM program is to develop and maintain up-to-date models covering all the significant agricultural areas in the state. NCRMs are described in more detail under *Models* at the Web site www.economics.water.ca.gov/. - Corps' IWR-MAIN. IWR-MAIN was developed by the Corps' Hydrologic Engineering Center, but it is maintained and is distributed by Camp, Dresser and McKee. IWR-MAIN has been designed for - o projecting municipal and industrial water demands, - analyzing the potential water savings from water demand management (water conservation) programs and incorporating these savings into projections of water demands, and - o analyzing the potential monetary benefits and costs of water conservation alternatives. IWR-MAIN can also facilitate decision-making in the following areas: - Water demand forecasting - Drought planning - Master planning - o Rate analysis - Watershed planning - Capital improvement planning - o Integrated resources management - o Conservation planning and evaluation IWR-MAIN is available at: http://www.iwrmain.com/ ### **Ecosystem Restoration** The Corps has developed a model for estimating the cost-effectiveness of ecosystem restoration plans: • Corps IWR PLAN. The Corps' IWR has developed IWR-PLAN Decision Support Software to assist with the formulation and comparison of alternative ecosystem restoration plan, although the program can be useful in planning studies addressing a wide variety of problems. IWR-PLAN can
assist with plan formulation by combining solutions to planning problems and calculating the additive effects of each combination, or "plan." IWR-PLAN can assist with plan comparison by conducting cost effectiveness and incremental cost analyses, identifying the plans that are the best financial investments and displaying the effects of each plan on a range of decision variables. IWR-PLAN takes user-defined solutions to planning problems and externally generated estimates of each solution's effects and can formulate all possible combinations of those solutions, considering user-defined relationships between solutions. IWR-PLAN will then identify which combinations are the best financial investments through cost effectiveness and incremental cost analyses. Each combination of solutions is an alternative plan. If alternative plans have already been formulated outside IWR-PLAN, the user can bypass the routine for building combinations and still use IWR-PLAN to assist in identifying which plans are the best investments. IWR plan is available at: http://www.pmcl.com/iwrplan/. ## **Flood Damage Reduction** The Corps and the Federal Emergency Management Agency (FEMA) have developed models that specifically evaluate flood damage reduction benefits of alternative plans. These include the following: - HEC-FDA. Developed by the Corps' Hydrologic Engineering Center (HEC) in Davis, CA, Flood Damage Analysis (FDA) is the Corps' primary flood damage reduction model which integrates hydrologic, hydraulic, and geotechnical engineering and economic data for the formulation and evaluation of flood damage reduction plans. The program incorporates risk-based analysis by quantifying uncertainties in the hydraulics, geotechnical, and economics data using Monte Carlo simulation. The two primary outputs from HEC-FDA include expected annual damage estimates and project performance statistics. Expected annual flood damage is the average of all possible damage values, taking into account all expected flood events and associated hydrologic, hydraulic, geotechnical, and economic uncertainties. Project performance statistics provide information concerning the risk within an area of annual (or long-term) flooding and the ability to survive flood events of given magnitudes. HEC-FDA is available at: http://www.hec.usace.army.mil/software/hec-fda/hecfda-hecfda.html - FEMA HAZUS. FEMA has developed GIS-based multi-hazard assessment software which contains a Flood Loss Estimation Model that includes flood hazard analysis and flood loss estimation modules. The hazard analysis module uses characteristics such as frequency, discharge, and ground elevation to estimate flood depth, flood elevation, and flow velocity. The loss estimation module calculates physical damage and economic loss using the results of the flood hazard analysis and structural inventories. In addition to the Flood Loss Model, HAZUS also contains earthquake and hurricane wind damage assessment models. HAZUS information is available at http://www.fema.gov/plan/prevent/hazus/index.shtm • FEMA HMGP Riverine Benefit-cost Software. FEMA has three spreadsheet modules for doing benefit-cost analysis for proposed riverine flood hazard mitigation grant projects: Very Limited Data, Limited Data, and Full Data. The use of a specific module depends upon the quantity and quality of engineering and structural inventory data available. These models are available at bchelpline@dhs.gov #### **Water Quality Improvement** The maintenance of good water quality is an important project objective. The State Water Resources Control Board (SWRCB) and the Metropolitan Water District of Southern California (MWD) in cooperation with the US Bureau of Reclamation (Bureau), and other agencies have developed economic models to assess the impacts of changes in water quality. - SWRCB Lost Beneficial Use Value Calculator. The SWRCB has developed the Lost Beneficial Use Value Calculator (LBUVC) to estimate lost benefits caused by diminished water quality levels. This model is based on the idea that there are upper and lower thresholds of water quality for which beneficial use value is fully unimpaired or fully impaired. For intermediate values of water quality, beneficial use value is proportional to the water quality level relative to these thresholds. Activities that generate beneficial use values are identified and economic per-unit values for these activities can be selected from a database of beneficial values built into the LBUVC. Pollution discharges that change water quality induce a proportional change in beneficial use value, provided the range of quality change is within impairment thresholds. Lost beneficial use value from multiple pollutants can be assessed in two ways: by assuming that a single pollutant is the limiting pollutant that determines all of the beneficial use value change or that each pollutant contributes proportionately to the change in beneficial use value. More information on this model can be found in the draft report by Daniel Lew, PhD, and others to the SWRCB, Assessing Economic Impacts of Water Pollution on Beneficial Uses in California Water Bodies: The Lost Beneficial Use Value Calculator (December 2003). - MWD Salinity Economics Impacts Model. The MWD in cooperation with the Bureau, DWR, and other agencies has developed a Salinity Economics Impacts Model to estimate regional economic impacts (costs to customers and agencies) of changes in salinity of water sold by MWD. The model is designed to assess regional economic impacts based upon average annual data such as water deliveries, total dissolved solids, and costs for a typical household, crop, etc. It uses mathematical functions which define the relationship between total dissolved solids (TDS) and the economic impact for various items affected by salinity such as the useful life of appliances, specific crops' yields, additional costs to industries and commercial businesses, etc. The model estimates the "incremental" economic benefits or impacts of TDS changes in SWP and Colorado River Aqueduct water compared to baseline conditions. More information about this model can be found in the report by MWD and the Bureau, Salinity Management Study, Final Report, Technical Appendices, June 1999. ## **Socioeconomic Impact Analysis** Economic feasibility analyses generally focus upon the primary, or direct, effects of proposed plans, which form the basis of project benefit-cost analyses. However, these direct effects can have ripple (indirect) effects throughout an economy. Input/output analysis is essentially a quantitative description of the relationship among industries within an economy. It shows the interdependence among various sectors of the economy as they combine to meet a given final demand for goods and services. I/O analysis is an excellent tool for providing a comprehensive description of the economy and tracing secondary economic impacts. Thus, I/O models are invaluable for estimating regional impacts which can be included in federal investigations (the "regional account") as well as project environmental impact reports/statements. IMPLAN® is a PC-based economic analysis system developed by Minnesota IMPLAN Group, Inc. It contains the software and the data files required to create regional models. Using IMPLAN, local I/O models can be developed to estimate the economic impact of various activities. For water resources planning, the model can be used to estimate the income and employment effects upon local communities resulting from water project construction and to estimate the regional effects of water transfers. More information on IMPLAN can be found at $\underline{www.implan.com/library/documents/implan\ io\ system\ description.pdf \# search = IMPLAN}.$ Table 5-1 summarizes the relationships of these models to the various program objectives that they address. Table 5-1 Economic analysis models and analysis objectives | | Economic justification | | | | | |-------------------------|--------------------------|-----------------------|------------------------|---------------------------|----------------------------------| | Organization/
models | Water supply reliability | Ecosystem restoration | Flood damage reduction | Water quality improvement | Socioeconomic
impact analysis | | DWR | • | | | | | | LCPSIM | X | | | | | | CALAG | X | | | | | | NCRM | X | | Х | | | | Corps | | | | | | | IWR MAIN | X | | | | | | IWR PLAN | | X | | | | | HEC FDA | | | Х | | | | FEMA | | | | | | | HAZUS | | | Х | | | | Riverine B/C | | | Х | | | | SWRCB | | | | | | | LBUVC | | | | X | | | MWD/Bureau | | | | | | | Salinity Model | | | | X | | | IMPLAN | | | | | X | ## **Chapter 6 Economic Analysis and the Federal Planning Process** For federal agencies that are involved with land and water use planning (for example, the US Army Corps of Engineers, the US Bureau of Reclamation and the Natural Resources Conservation Service), the Economic and Environmental Principles & Guidelines for Water and Related Land Resources Implementation Studies (P&G) set forth the overall planning process that is to be used for project formulation, including the economic analysis. However, federal agencies can adopt even more specific guidelines. For example, the Corps in particular has developed extensive guidelines (engineering circulars, engineering regulations, engineering manuals, policy guidelines letters, economics guidelines memoranda, etc.).²⁸ DWR economics staff follows economic guidance set forth in the P&G because it can be very relevant to DWR studies. First, if DWR is a partner with a federal agency on a study or project, federal guidelines must be followed in order to determine the federal interest in the project and consequently its eligibility for federal funding. However, because the
federal interest is focused primarily upon the national economic development (NED) account or the Corps' national ecosystem restoration (NER) account, DWR should also broaden the economic analysis to include regional economic development (RED) or other social effects (OSE) accounts, which can significantly assist in the decision-making process. The RED account is particularly important if a proposed plan will have significantly different effects upon regions that might otherwise be irrelevant to the NED national perspective. For example, the importance of the RED and OSE accounts was vividly illustrated with the economic and social disruption along the Gulf Coast caused by Hurricane Katrina in 2005. It is estimated that within a year after the storm (2006), total New Orleans employment will only be about half of pre-storm forecasts. It is anticipated that the value of such a devastating loss of jobs and the forgone wages, along with lost business revenue, lost taxes/fees, and the values of disrupted social services could at least equal the more tangible damage to buildings and infrastructure.²⁹ Although tangible physical losses are typically included in NED flood damage reduction studies, many of these other costs are excluded, not only because of their complexity but also NED guidelines. For example, the loss of income can only be included in a NED flood damage reduction analysis if it can be shown that this loss is not recovered by another firm at a different location or time. Thus, even if the tremendous loss of jobs and income could have been foreseen by Corps' planners in New Orleans, they might not have been able to include them in a proposed project's NED analysis if it could be shown that these jobs would move elsewhere after a damaging storm event. In other words, one region's loss could be another region's gain, which "nets out" in a NED analysis. Second, the procedures presented in the P&G for estimating NED benefits (such as water supply, flood damage reduction, recreation, etc.) are appropriate for most DWR analyses, although there may be other differences that need to be taken into account. For example, because of the national perspective of the NED analysis, the evaluation of a plan's effect upon agriculture is limited to basic crops. Basic crops (rice, cotton, corn, soybeans, wheat, milo, barley, oats, hay, and pasture) are crops grown throughout the country such that no water resources project would affect the price and thus cause transfers from one ²⁸ Corps planning and economics guidelines may be found at: http://www.usace.army.mil/cw/cecw-cp/library/planlib.html 29 Sacramento Bee, "Flood's Indirect Impact is Deep," December 30, 2005. region to another. The production of basic crops is primarily limited by the availability of land. In contrast, on a national basis, production of crops other than basic crops is seldom limited by the availability of land. Thus, production from increased acreage of non-basic crops in the project area could be offset by a decrease elsewhere in the country. DWR analyses may not need to distinguish between basic and non-basic crops. Third, many of the procedures used by federal and DWR analyses to compute net benefits or basic crop ratios are similar. However, some of the parameters used in the analysis may be different, particularly the discount rate used to discount future benefits and costs. Any differences between discount rates can be accounted for in an analysis by using a sensitivity analysis to determine the effect of different federal and DWR discount rates. Finally, because many water resource development projects are now multi-purpose, and one of those purposes is often ecosystem restoration, DWR can learn from methods adopted by federal agencies in evaluating ecosystem benefits in combination with more traditional benefits, such as water supply and flood damage reduction. The fundamental question is: Are ecosystem benefits to be monetized or not? The answer depends upon the data available concerning the ecosystem component of the project, the valuation tools which the analysts is most comfortable with, and, if a federal agency is cooperating with the study, does that agency accept monetized ecosystem values? The Hamilton City and Colusa Basin studies illustrate different methods for monetizing vs. not monetizing ecosystem benefits. These economic analyses are summarized in Appendix B. ## **Federal Decision Criteria** The *P&G* identifies four broad decision criteria for the evaluation of all plans: *completeness*, *effectiveness*, *effectiveness*, and *acceptability*. Completeness is the extent to which a given plan has all the necessary investments and other actions to ensure the realization of the planned effects. Effectiveness is the extent to which an alternative plan accomplishes its planning objectives. Efficiency is the extent to which an alternative plan is the most cost-effective means of accomplishing its planning objectives and is the criteria which is addressed by the economic analysis. Acceptability is the workability and viability of the alternative plans with respect to acceptance by state and local entities and the public as well as compatibility with existing laws, regulations, and public policies. Project *justification* is determined by how well a proposed project meets all four criteria. ## **Federal Planning Accounts** The P&G states that the federal objective of water and related land resources planning is to contribute to NED consistent with protecting the nation's environment, in accordance with national environmental statues, applicable executive orders, and other federal planning requirements. Contributions to NED (NED outputs) are increases in the net value of the national output of goods and services, expressed in monetary units. They are the direct net benefits that accrue in the planning area and the rest of the nation. Besides the national economic development account there are three other accounts. The environmental quality (EQ) account displays non-monetary effects on ecological, cultural, and aesthetic resources including the positive and adverse effects of ecosystem restoration plans (discussed below). The RED account displays changes in the distribution of regional economic activity (for example, income and employment). Finally, the OSE account displays plan effects on social aspects such as community impacts, health and safety, displacement, and energy conservation. Display of the NED and EQ accounts is required whereas display of the other two accounts is discretionary. ## **Plan Formulation** The federal planning process consists of six steps: (1) specification of water and related land resources problems and opportunities; (2) inventory, forecast, and analysis of water related land resources within the study area; (3) identification of alternative plans; (4) evaluation of the effects of alternative plans; (5) comparison of the alternative plans; and (6) selection of the recommended plan based upon the comparison of the alternative plans. Plan formulation consists of the third, fourth, and fifth planning steps. It is a highly iterative process that involves cycling through the formulation, evaluation, and comparison steps many times to develop a reasonable range of alternative plans and then narrow those plans down to a final array of feasible plans from which a single plan can be identified for implementation. The Corps has identified the following types of plans: - NED Plan. For single project purposes, such as Flood Damage Reduction (FDR) where project outputs can be measured in dollars, project selection is based on maximizing net monetary benefits. The methodology for an NED Plan is relatively straightforward. The first task is to estimate without project conditions (for example, without project flood damage). Next, the net annual benefits for all of the alternatives being evaluated must be determined. Net annual benefits are the annual benefits (for example, the reduction in without project flood damage attributable to each alternative) minus the annual costs for each alternative. Alternatives with positive net benefits are economically feasible. The most efficient of these feasible plans is the one that reasonably maximizes net benefits, and this is referred to as the NED Plan - NER Plan. The Corps incorporated ecosystem restoration as a project purpose in response to the increasing national emphasis on environmental restoration and preservation. The objective of ecosystem restoration is to restore degraded ecosystem structure, function, and dynamic processes to a less degraded, more neutral condition. For the single project purpose of ecosystem restoration where project outputs (for example, increases in habitat) are measured in non-monetary units, the analysis is more subjective in that it does not result in the unique identification of a "best" plan. But the Corps does have an accepted methodology to determine the relative performance of these types of projects. ³⁰ Cost-effectiveness and incremental-cost analyses are used to help make the subjective decision that incremental units of output are subjectively valued at least equal to the incremental costs and that no alternative can provide the same level of output at a lower cost. Other criteria such as significance and relative scarcity of the resources/ecosystem to be restored are critical for demonstrating the incremental justification of the potential ecosystem restoration plans. The Corps does not place monetary values on ecosystem benefits. - Combined NED/NER Plan. Corps' projects that produce both NED and NER benefits will result in a "best" recommended plan so that no alternative plan has a higher excess of NED monetary benefits plus NER non-monetary benefits over project costs. This plan shall attempt to maximize the sum of net NED and NER benefits and to offer the best balance between two federal objectives. Plan formulation for projects
involving NED (for example, water supply and flood _ ³⁰ Interestingly, the US Bureau of Reclamation does not currently have the authority to formulate NER plans. damage reduction) and NER objectives presents a challenge because alternative plans produce both monetary and non-monetary benefits. Comparison of the trade-offs among alternative plans is difficult because monetary and non-monetary benefits cannot be directly compared. To facilitate the plan formulation process, the methodology outlined in the Corps' recent *Engineering Circular 1105-2-4-4*, "Planning Civil Works Projects under the Environmental Operating Principles," (May 1, 2003) was used. ³¹ The steps in this methodology include: - o Formulate and screen management measures to achieve planning objectives and avoid planning constraints. Measures are the building blocks of alternative plans. - o Identify a primary project purpose (NED or NER). - o Formulate, evaluate, and compare an array of alternative plans (which are comprised of all or some of the above measures) to achieve the primary purpose and identify a feasible plan that reasonably maximizes net benefits. - o Formulate and screen combined plans that achieve both NED and NER objectives. - o Evaluate and compare trade-offs among the combined plans and rank them. The highest ranked combined plan is the plan that reasonably maximizes total net NED and NER outputs. - O Determine whether the highest ranked combined plan is justified; that is, whether the benefits of the plan exceed the costs. If the highest ranked combined plan is not justified, move to the next ranked plan. Continue to move down through the ranked plans until a justified combined plan is identified. The highest ranked and justified combined plan is the NED/NER plan or the combined plan. If no combined plan is justified, then the single-purpose NED or NER plan shall be recommended for implementation. - Locally Preferred Plan. Projects may deviate from the NED, NER, or combined NED/NER plan if requested by the non-federal sponsor. For example, if the sponsor prefers a more costly plan and the increased scope of the plan is not sufficient to warrant full federal participation, the LPP may be approved as long as the sponsor pays the difference in costs between the federally recommended plan and the LPP. Table 6-1 summarizes the Corps' project evaluation and selection criteria for the various types of plans. ³¹ EC 1105-2-404: www.usace.army.mil/inet/usace-docs/eng-circulars/ec1105-2-404/toc.htm Table 6-1 Summary of US Army Corps of Engineers project evaluation and selection criteria | Type of projects | Plan benefits measures | Plan evaluation procedures | Plan selection rules ^a | |-----------------------------------|---|---|--| | Single purpose NED projects | Contributions to national economic development (NED outputs) are increases in the net value of goods and services expressed in monetary units. | Benefit-cost analysis: monetary
NED benefits and monetary NED
costs | "For all project purposes except ecosystem restoration, the alternative plan that reasonably maximizes net economic benefits consistent with protecting the Nation's environment, the NED plan, shall be selected." | | Single purpose NER projects | Single purpose ecosystem restoration plans shall be formulated and evaluated in terms of their net contributions to increases in ecosystem value (NER outputs) expressed in non-monetary units. | Cost-effectiveness and incremental cost analysis based on non-monetary NER benefits NER benefits and costs to implement plans. | "For ecosystem restoration projects, a plan that reasonably maximizes ecosystem restoration benefits compared to costs, consistent with the Federal objective, shall be selected. This selected plan must be shown to be cost-effective and justified to achieve the desired level of output. This plan shall be identified as the NER plan." | | Multiple purpose NED/NER projects | Multipurpose plans must be evaluated in terms of both (monetary) NED outputs and (nonmonetary) NER outputs. | Combination of NED benefit-cost analysis and NER benefits analysis, including cost-effectiveness and incremental cost analysis. | "Projects which produce both NED benefits and NER benefits will result in a best recommended plan so that no alternative plan or scale has a higher excess of NED benefits plus NER benefits over total project costs. This plan shall attempt to maximize the sum of NED and NER benefits, and to offer the best balance between the two objectives." | a. Source: US Army Corps of Engineers guidelines ER 1105-2-100 ## **Multi-Objective Projects** In recent years, increasing emphasis has been placed upon developing water and land resource projects that have multiple objectives. Often one of these objectives is ecosystem restoration, which can increase the project's benefits and the number of stakeholders supporting the proposed project, but which can also make it very difficult to perform an economic analysis because of the inherent difficulties in placing monetary values on ecosystem benefits and incorporating them into benefit-cost analysis. Two flood management example analyses are presented in Appendix B and illustrate different ways of evaluating ecosystem benefits in an economic analysis. The Hamilton City study follows Corps planning practices by utilizing cost-effectiveness/ incremental cost analysis to evaluate ecosystem benefits—basically, determining which ecosystem alternative gives the "most bang for the buck" and combining this information (through a trade-off analysis) with flood damage reduction benefits of the proposed project. In contrast, the Colusa Basin study places monetary values on ecosystem benefits, which are then directly incorporated into a benefit-cost analysis along with flood damage reduction benefits. DWR is involved in other multi-objective programs as well, including the following: - California Bay-Delta Surface Storage Program: The CALFED Bay-Delta Record of Decision (ROD), completed in August 2000, directed DWR and the Bureau to evaluate five surface storage proposals (Shasta Enlargement, North of Delta Off-Stream Storage, In-Delta Storage, Los Vaqueros Enlargement, and Millerton Enlargement (or equivalent). A feasibility study has been completed for the In-Delta proposal, which would provide capacity to store approximately 217,000 acre-feet of water in the south Delta. Monetary benefits were estimated for project urban and agricultural water supplies as well as recreation, avoided levee maintenance costs, and reduced flood risk. A qualitative benefit assessment was conducted for ecosystem restoration, water quality and operational flexibility benefits. The In-Delta Draft Economics Report can be found on the program's Web site: calwater.ca.gov/Programs/Storage/InDeltaStorageReports 2003/InDeltaFeasibilityStudies Jan20 04.shtml - California Bay-Delta Authority/DWR/Bureau "Common Assumptions" process. These three agencies are working cooperatively to develop a common set of evaluation approaches and assumptions for studying potential surface storage facilities listed above. A Common Assumptions economics workgroup has been tasked with identifying economic measures and models to be used in the economic analysis for all projects that are being evaluated. The workgroup is developing (a) a common reporting metrics for agricultural economics, municipal and industrial water supply and water quality, flood damage, recreation, ecosystem, hydropower, regional economics, and cost estimation, (b) providing a list of economic tools that could be used within these metrics, (c) investigating cost estimation methods being used by the Bureau and DWR to determine which methods and data are the same as well as different for both agencies, and providing information for project teams on the appropriate guidelines and methods for cost estimation consistent with Bureau and DWR standards. The recommendations of this workgroup should be available in summer of 2006. - Proposition 50 Integrated Regional Water Management Grant Program. Proposition 50, the Water Security, Clean Drinking Water, Coastal and Beach Protection Act of 2002, was passed by California voters in 2002 to "...encourage integrated regional strategies for management of water resources and to provide funding, through competitive grants, for projects that protect communities from drought, protect and improve water quality, and improve local water security by reducing dependence on imported water." This legislation authorized \$500 million in competitive grants to be administered by DWR and the State Water Resources Control Board. As part of the grant process, applicants are required to provide an economic analysis showing that the project is economically feasible. Benefits to be evaluated include water supply and quality, ecosystem restoration, flood control, recreation, and energy use. Physical benefits (project outputs) are quantified if possible. If physical benefits cannot be quantified, they must be qualitatively described. Monetary benefits are quantified wherever possible. The economic guidelines for this grant program should be available in summer of 2006. Agricultural Water Suppliers Efficient Water
Management Practices Act of 1990 (AB 3616). The intent of this act was to promote the implementation of voluntary, efficient water management practices (EWMPs) among agricultural water suppliers. It led to the creation of the Agricultural Water Management Council and the signing of a memorandum of understanding among agricultural water supplies, environmental groups, and other interested parties. As part of the EWMP evaluation process, a Net Benefits Analysis was developed that quantitatively and qualitatively evaluates technical, environmental, socioeconomic, financial, and third party impacts related to each EWMP. The Net Benefits Analysis can be found on the Council's Web site: www.agwatercouncil.org/ ## Chapter 7 Financial Analysis Financial analysis compares project financial costs to project revenues and takes into account the availability of funds. Project financial costs are those incurred in constructing, operating, and maintaining project facilities. As discussed in Chapter 1, there are significant differences between economic and financial analyses, both in their objectives and data requirements. Although an economic analysis determines whether a project is an efficient use of resources, it does not determine if someone is willing to pay for the project and has the capability to raise the necessary funds. A financial analysis answers questions such as, Who should repay the project costs? Are they able to meet repayment obligations? Will the beneficiaries be financially better off compared to what they will be obligated to pay? ### **Decision Criteria** The test of financial feasibility is passed if (a) beneficiaries are willing and able to pay their allocated costs for project outputs over the life of the project, (b) sufficient capital is authorized and available to finance construction to completion, and (c) estimated revenues are sufficient to cover costs over the repayment period. Furthermore, DWR does not propose construction of a project unless - expected revenues or other operating income are sufficient to cover the reimbursable portion of the State's capital investment within the specified time period of repayment and at the project interest rate, - the project's financial performance or feasibility does not depend on the subsequent construction and operation of any other project, except for those included in the "Delta Operating System," or - each reimbursable purpose of a multi-purpose project meets the test of financial feasibility. ### **Financial Costs** Financial costs are the actual expenditures, "out of pocket," costs that are required to construct and operate a project. Financial costs can be grouped into two main categories—capital costs and operation, maintenance, and replacement costs. #### **Capital Costs** Capital costs are nonrecurring costs required to construct a project from the inception of planning to completion of construction. These costs include the following: - Planning and design - Labor, materials, supplies, utilities, and services during construction - Land, easements, rights-of-way, and water rights - Relocation of facilities - Clearing and preparation of project land - Compensation for damage - Construction contingencies - Administrative, supervisory, and interim maintenance during construction - Special works and services - Regulatory - Interest during construction For small projects, capital costs may be incurred over one year or less. However, for large projects, capital costs may be incurred over many years, and the economic analysis should take this into account (see discussion of "Forgone Investment Value" in Appendix A). #### **Operation, Maintenance, and Replacement Costs** Operation and maintenance (O&M) costs occur continuously or periodically, and they are incident to project operations, such as electric power for pumping, materials. and supplies used in maintenance and repair, and project administration. For State Water Project (SWP) repayment purposes, a further distinction is made between fixed and variable O&M costs: Fixed O&M costs are common to a project as a whole and do not vary based upon water deliveries (or other project outputs), whereas variable O&M costs are recurring costs that do vary depending upon project outputs (such as pumping energy requirements. Replacement costs are recurring costs of replacing facilities or major items of equipment (such as pumps) with an economic life shorter than the period of project repayment and which, therefore, must be replaced one or more times within the repayment period. ## **Financing Water Infrastructure Projects** Traditionally, California water agencies have relied upon several conventional sources to finance major water infrastructure improvements: (1) federal grants and cost-sharing; (2) general obligation bonds, (3) revenue bonds, (4) assessment bonds, (5) lease revenue bonds, and (6) State and federal loans and grants programs. For a variety of reasons, reliance upon these sources is becoming more problematic and water agencies are turning to more innovative long-term debt financing. Conventional financing methods include: - Federal cost-sharing. State and local agencies can become local sponsors with the federal government for reconnaissance and feasibility studies as well as construction projects. The federal government pays all reconnaissance study costs; however, the federal cost share for feasibility studies is 50%. For construction projects, the amount of the federal cost share varies depending upon the project purpose and the laws that apply to each project. Table 7-1 presents the construction cost-sharing responsibilities for the federal and non-federal project sponsors by project purpose. ³² - State-cost sharing. For flood control projects involving federal, State and local sponsors, the state's share of the non-federal costs may be increased from 50% to 70% if the local agency is proposing a multi-purpose project rather than a single-purpose flood control project (AB 1147, 1999). _ ³² For a complete description of the federal and local project cost share responsibilities, see the Corps' *Planning Guidelines Notebook*, Appendix E www.usace.army.mil/inet/usace-docs/eng-regs/er1105-2-100/a-e.pdf Table 7-1 Summary of federal and non-federal cost sharing responsibilities by project purposes | Project purpose | Federal | Non-federal | |------------------------|---------|-------------| | Ecosystem restoration | 35% | 65% | | Flood damage reduction | 35% | 65% | | Water supply | 0% | 100% | | Recreation | 50% | 50% | Source: US Army Corps of Engineers guidelines ER 1105-2-100; Appendix E (April 2000) - General obligation bonds. These bonds are typically used to finance improvements benefiting the community as a whole, and they are secured by the full faith and credit of the agency. General obligation bonds issued by public water agencies are secured by a pledge of the agency's *ad valorem* taxing power (that is, the power to tax property based upon its value). However, the passage of Proposition 13 (and its requirement for two-thirds voter approval) has limited the ability of agencies to assess additional property taxes, needed to fulfill this pledge and thereby reducing the use of these bonds. - Revenue bonds. These bonds do not require the agency's full faith and credit pledge. Debt service for these bonds is paid exclusively from a specific revenue source, such as the revenue obtained from the operation of the financed project. Because revenue bonds do not require voter approval, they are now more commonly used than general obligation bonds. - Lease revenue bonds. Taxpayer resistance and State statutes have limited the taxing and borrowing ability of local agencies, thus reducing the use of general obligation bonds. As a result, lease revenue bonds have become quite common. In California, a common form of a lease revenue bond is the Certificate of Participation. With a COP, facilities are built or acquired by an agency of the city and leased to the city, for which the city makes lease payments equal to the principal repayment plus interest. Either a city non-profit corporation or a community development agency must be used as an intermediary leasing entity, but that agency must give the facilities to the city free and clear without added expense when the indebtedness is repaid. - Bond pools. Bond pools increase access to bond funds for smaller water agencies which might not be able to obtain this type of funding. Bond pools require the use of a Joint Powers Authority to combine several small bond offerings into a single financial package, thereby minimizing the cost of the bond issuance for participating agencies. - Privatization. Privatization occurs when the private sector becomes involved in the design, construction, financing, ownership or operation of a public facility such as a water system improvement. Privatization can offer several advantages. For example, it may be cheaper or more reliable than other forms of financing, and it may also provide substantial tax advantages to the private sector. When the publicly owned water agency's access to the financial markets is diminished or non-existent, such as is the case for many smaller utilities, privately arranged financing may be an attractive option. Although privatization has been used in other states, it is not common in California. - Water transfers. Another potential opportunity for water agencies (especially agricultural agencies) involves the sale and transfer of water to other agencies. Funds received from these transfers help pay for water system improvements. An example of this is the negotiated agreement between the Metropolitan Water District of Southern California and the Imperial - Irrigation district, where the MWD is financing more than \$200 million in IID system improvements in exchange for a 35-year right to about 106,000 acre-feet of water per year. - State and federal financial assistance programs. There are
numerous State and federal assistance programs (loans and grants) available to water agencies. These programs target numerous objectives, including safe drinking water, water conservation, water recycling, and water supply development (for example, groundwater recharge projects). Each of these programs has established criteria to determine project eligibility and funding. Most of the State and federal programs do not provide funding to investor-owned and mutual companies because this is considered to be adding value to privately owned businesses. 33 ## **State Water Project Financing** The SWP depends on a complex system of dams, reservoirs, power plants, canals, and aqueducts to deliver water. The SWP now comprises 28 dams and reservoirs, 22 pumping and generating plants, and nearly 660 miles of aqueducts. Facilities were initially designed and built to meet a buildup in demand for water through 1990; these demands were projected to eventually be about 4 million acre-feet, which can not be met with current facilities and programs. The most SWP entitlement water delivered to date was about 2.8 million acre-feet in 1989.³⁴ - SWP Methods of Financing. SWP project facilities have been constructed with four general types of financing: (1) general obligation bonds and (2) tideland oil revenues (under the Burns-Porter Act approved by voters in 1960), (3) revenue bonds, and (4) capital resources. Repayment of these funds and the operations, maintenance and replacement costs associated with water supply deliveries are paid by the 29 agencies/districts that have long-term SWP contracts. The contracts initially provided for a combined maximum annual entitlement of 4.23 million acre-feet of water supply, later adjusted to 4,217,786 acre-feet due to contract amendments in the 1980s. The contracts are in effect until 2035. - Types of SWP Charges. Charges to SWP contractors include the costs of facilities for the conservation and development of a water supply and the conveyance of such supply to SWP contractor service areas. The Delta Water Charge is a unit charge applied to each acre-foot of SWP water the contractors are entitled to receive according to their contracts. The unit charge, if applied to each acre-foot of all such entitlements for the remainder of the project repayment period, is calculated to result in repayment of all outstanding reimbursable costs of the SWP's conservations facilities (such as Lake Oroville). The Delta Water Charge consists of a capital cost and a minimum Operation, Maintenance, Power, and Replacement (OMP&R) component. The Transportation Charge recovers costs of facilities required to transport SWP supplies from the Delta to the contractor's service area. Generally, the annual charge represents each contractor's proportionate share of the reimbursable capital costs and operating costs of the SWP transportation facilities (such as the California Aqueduct). The Transportation Charge consists of a capital cost component as well as a minimum OMP&R and variable OMP&R component. ³³ A complete listing of the state assistance programs can be found at: www.grantsloans.water.ca.gov/choose/index.cfm ³⁴ More detailed information on SWP financing can be found in the annual Bulletin 132 series (*Management of the California Water Project*). ## **Cost Allocation** Cost allocation is the process by which financial costs of a project are distributed among project purposes. Separable costs that can be identified with particular purposes are allocated directly to those purposes. Use of one structure for more than one project purpose allows the purposes to be included at less cost than the total cost of separate structures for each purpose. The incremental cost of including each purpose as an addition to other purposes of the combined structure should be less than the cost of the most economical single-purpose alternative means of producing similar benefits for that purpose. A basic principle of cost allocation is that savings, if any, resulting from multiple purpose projects should be equitably distributed among the project's purposes. No purpose should be assigned costs in excess of its benefits or should be supported by benefits attributable to another purpose, and no purpose should be assigned costs greater than the cost of an alternative single-purpose project. Cost allocation should not be confused with cost sharing. Cost allocation refers only to an equitable division of costs among the various purposes served, with each purpose receiving its fair share of savings from multiple-purpose development. Cost sharing refers to the division of costs allocated to each purpose to the individual agencies involved. These costs can be borne by various federal, State, or local agencies according to prescribed policies as described above. - Types of Allocated Costs. Costs that are included in a cost allocation process are: - o Specific costs: Costs of facilities that exclusively serve only one project purpose. - Separable costs: Costs which could be omitted from the project if one purpose of the project were excluded. They may also be costs incurred for structures serving several but not all purposes. In some cases specific and separable costs are the same. - Alternative costs: the cost of the least costly single-purpose alternative means of providing the same benefits. The alternative may be a single-purpose project at the same site. - o Justifiable costs: The lesser of benefits or alternative costs and is the maximum that can be allocated to any purpose. - o Remaining benefits: Justifiable costs minus separable costs for each purpose. - Cost Allocation Methods. There are various cost allocation methods, including Separable Costs-Remaining Benefits (SCRB), Alternative Justifiable Expenditures, and Proportionate Use of Facilities methods. 35 However, the most commonly used method is the SCRB method. The SCRB method distributes costs among the project purposes by identifying separate costs and allocating joint costs or joint savings in proportion to each purpose's remaining benefits. The SCRB method is applied to SWP water storage dams and reservoir projects. _ ³⁵ These methods are discussed in more detail (with some examples) in the draft DWR *Economics Practices Manual*, Chapter VII. The SCRB method includes the following steps: - 1) The benefits for each purpose are estimated. - 2) The alternative costs of single-purpose projects to obtain the same benefits are estimated. - 3) The lesser of the two items above is selected for each purpose as the maximum amount which can be allocated to the purpose and is designated as the justifiable cost. - 4) The separable cost of each purpose is estimated. The project with the purpose omitted should be the least costly project capable of providing the same benefits for the remaining project purposes. That project can be at the same site, but can also be at another site as long as the service areas for the remaining purposes are the same. - 5) The separable cost of each purpose is deducted from the justifiable costs to determine its remaining justifiable costs. - 6) The percentage distribution of the remaining justifiable costs is determined. - 7) The total separable cost is deducted from total project cost to determine the total remaining joint costs which are distributed proportionately by applying the percentages found in step 6. - 8) The cost allocation to each purpose is the sum of the distributed remaining joint cost and the separable cost. The Hamilton City Flood Damage Reduction and Ecosystem Restoration Study provides a good example of a SCRB cost allocation among purposes. This cost allocation is described in Appendix B. ## **Determining Local Agency Repayment Capability** Repayment capability is determined by a year-by-year analysis of a district's income from and expenses of its water project. Such income may consist of receipts from water toll chargers or tax assessments, or both. The analysis also shows operation, maintenance, and replacement expenditures, payments to a reserve fund, and debt service payments (interest and principal). The analysis should be extended through each year of the repayment period, showing the manner in which the project will be repaid. If a development period or buildup period is necessary for financial feasibility, then that should also be taken into account.